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Abstract There are, at least, three completely equivalent formulations of quantum
mechanics: the Hilbert space approach, the phase-space deformation approach and
the tomographic one. The Hilbert space approach is the most widely used to describe
dynamics at the microscopic level. However, with the recent emergence of “quan-
tum technology” it became important to have appropriate models for systems with
behavior at the classical-quantum border. For these systems, the deformation and
tomographic approaches turn out to be more convenient than the Hilbert space one.
This paper presents a short review of the alternative quantum formalisms as well as
some applications, one of them discussed at the Nice conference.

Keywords Phase-space deformation · Quantum tomography · Quantum kinetics ·
Quantum complexity

1 Introduction

There are, at least, three completely equivalent formulations of quantum mechanics:
the Hilbert space approach, the phase-space deformation approach and the tomo-
graphic one.1 In the Hilbert space approach quantum states are mapped to rays in
Hilbert space and physical measurable quantities are obtained from expectation val-
ues of the self-adjoint operators that represent observables. This is the most widely
used formalism to describe dynamics at the microscopic level. However, with the
recent developments in quantum technology it became important to have suitable
models for systems with a behavior at the classical-quantum border. For these sys-
tems, it would be convenient to have a “smooth” transition between the phase space

1For other formulations of quantum mechanics see D. F. Styer et al. Am. J. Phys. 70 (2002) 288–
297. Here however I have emphasized those that seem most useful to describe systems at the
classical-quantum border.
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description of classical dynamics and the quantum phenomena. This is achieved by
a phase space formulation of quantum mechanics, the quantum effects correspond-
ing to a replacement of the classical commutative algebra of velocity and momenta
by a non-commutative algebra. Likewise the non-commutative nature of quantum
observables is circumvented in the tomographic approach by dealing with linear
combinations of the noncommuting observables, the full scope of quantum dynam-
ics being obtained by varying the coefficients in the linear combination. The Hilbert
space approach being very familiar, this paper only presents a short review of the
other two quantum formalisms as well as some applications. Finally it is pointed
out that the alternative approaches corresponding to a replacement of the operators
by functions (operator symbols) with a non-commutative algebra, it is, in principle,
possible to develop many other equivalent formalisms for quantum mechanics. This
is formalized in a quantizer-dequantizer framework.

2 Quantum Mechanics and Deformation Theory

The phase space of classical mechanics is a symplectic manifold W = (T ∗M,ω)

where T ∗M is the cotangent bundle over the configuration space M and ω is a
symplectic form. In local (Darboux) coordinates (pi , qi ) the symplectic form is

ω =
∑

dpi ∧ dqi (1)

The Poisson bracket gives a Lie algebra structure to the C∞-functions onW , namely

{ f, g} =
∑

i

∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

(2)

in local coordinates.
The transition to quantum mechanics is now regarded as a deformation of this

Poisson algebra [1]. Let for example T ∗M = R2n . Then,

ω =
∑

1≤i, j≤n

ωi j dx
i ∧ dx j =

∑

1≤i≤n

dxi ∧ dxi+n (3)

Consider the following bidifferential operator

Pr ( f, g) =
∑

i1···ir
j1 ··· jr

ωi1 j1 · · ·ωir jr ∂ i1 · · · ∂ ir ( f )∂ j1 · · · ∂ jr (g) (4)

P1( f, g) is the Poisson bracket. P3( f, g) is a non-trivial 2-cocycle and, barring
obstructions, one expects the existence of non-trivial deformations of the Poisson
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algebra. Existence of non-trivial deformations have indeed been proved in a very
general context [2–5]. They always exist if W is finite-dimensional and for a flat
Poisson manifold they are all equivalent to the Moyal [6] bracket

[ f, g]M = 2

�
sin

(
�

2
P

)
( f, g) = { f, g} − �

2

4.3! P
3( f, g)+· · · (5)

Moreover [ f, g]M = 1
i� ( f ∗� g − g ∗� f ) where f ∗� g is an associative star-

product

f ∗� g = exp

(
i
�

2
P( f, g)

)
(6)

Correspondence with quantummechanics formulated in Hilbert space is obtained
by the Weyl quantization prescription. Let f (p, q) be a function in phase space and
f̃ its Fourier transform. Then, if to the function f we associate the Hilbert space
operator

Ω( f ) =
∫

f̃ (xi , yi )e
− i

�

∑
xi Qi+yi Pi dxidyi (7)

where Qiψ = xiψ and Pi = − i� ∂
∂xi

ψ , one finds

[Ω( f ),Ω(g)] = i�Ω ([ f, g]M) (8)

with, in the left-hand side, the usual commutator for Hilbert space operators and in
right hand side the Moyal bracket. Therefore quantum mechanics may be described
either by associating self-adjoint operators in Hilbert space to the observables or,
equivalently, staying in the classical setting of phase-space functions but deforming
their product to a ∗�- product and their Poisson brackets to Moyal brackets.

Time evolution of the observables is described by the Moyal equation

∂

∂t
f = [ f, H ]M = 1

i�
( f ∗� H − H ∗� f ) (9)

Somewhat related to quantization by deformation is the geometric quantization
theory. Geometric quantization [7] is a very nice and profound theory. Starting from
a classical phase-space it aims to construct, in a consistent manner, a Hilbert space
representing the corresponding quantum theory. The final product being a Hilbert
space, a setting quite different from the classical phase-space, geometric quantization
is probably not so useful to study systems at the classical-quantum border. I might
be wrong.

Here is a brief sketch of the geometric quantization scheme: One starts from a
manifold M with a symplectic structure ω and construct a Hermitean line bundle
L with a connection of curvature −iω. L is the prequantization line bundle and the
Hilbert space H0 of square-integrable sections of L is the prequantum Hilbert space.
Smooth functions on M are mapped to operators on H0 taking Poisson brackets to
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commutators. H0 is in general too big a space. H0 is then cut down by polarization,
which picks out a subspace Px of the complexified tangent space at x ∈ M . The
quantumHilbert space H is then defined to be the space of square-integrable sections
of L that yield zero when we take their covariant derivative at any point x in the
direction of any vector in Px .

3 Quantum Mechanics in the Tomography Approach

The tomography approach may be used both for classical and quantum mechanics,
which makes the classical-quantum transition quite easy. One therefore starts by
describing the tomography formulation of classical statistical mechanics. States in
classical statistical mechanics are described by a function ρ (x, p), which is the
probability distribution in phase space,

ρ (x, p) ≥ 0 ,

∫
ρ (x, p) dp = P(x) ,

∫
ρ (x, p) dx = P̃(p) , (10)

P(x) and P̃(p) being the (marginal) probability distributions for position and
momentum.

The density function ρ (x, p) is normalized

∫
ρ (x, p) dx dp = 1 .

Consider now a parametrized observable, a linear function on the phase space of the
system,

X (x, p) = μx + νp , (11)

The variable X (x, p) can be considered as the position of the systemwhenmeasured
in a rotated and rescaled reference frame in the classical phase space. All the position
andmomentum features of the systemare obtained byvarying theμ and ν parameters.
The tomography map is defined as

M (X, μ, ν) = 1

2π

∫
e−ik(X−μx−νp) ρ (x, p) dx dp dk . (12)

which is an homogeneous function,

M (λX, λμ, λν) = |λ|−1M (X, μ, ν) , (13)

and the Eq. (12) can be inverted,
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ρ (x, p) = 1

4π2

∫
M (X, μ, ν) exp [−i (μx + νp − X)] dX dμ dν . (14)

Therefore the classical systemmay be equivalently described by the phase space den-
sity ρ (x, p) or by the tomography map. The tomography map cannot be an arbitrary
function, it must be such that the corresponding ρ (x, p) in (12) is a nonnegative
function. As seen from (12) the classical tomography map is the Fourier transform
of a characteristic function

M (X) = 1

2π

∫
〈eikX 〉e−ikX dk (15)

which is a real nonnegative function. Furthermore

M (X) =
∫

ρ (x, p) δ (X (x, p) − X) dx dp . (16)

and ∫
M (X) dX =

∫
ρ (x, p) dx dp = 1 . (17)

The evolution equation for the classical phase space density of a particle with
mass m = 1 and potential V (x),

∂ρ (x, p, t)

∂t
+ p

∂ρ (x, p, t)

∂x
− ∂V (x)

∂x

∂ρ (x, p, t)

∂p
= 0 (18)

can be rewritten in terms of the tomography map M (X, μ, ν, t)

•
M − μ

∂

∂ν
M − ∂V

∂x
(q̃)

[
ν

∂

∂X
M

]
= 0 , (19)

with the argument of the function ∂V/∂x being replaced by the operator

q̃ = −
(

∂

∂X

)−1
∂

∂μ
. (20)

For the mean value of position in classical statistical mechanics, one has

〈x〉 =
∫

ρ (x, p) x dx dp = i
∫

M (X, μ, ν) ei X δ′ (μ) δ (ν) dX dμ dν . (21)

In quantum mechanics one considers the observable (� = 1)

X̂ = μq̂ + ν p̂ , (22)
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q̂ and p̂ being the quantum position and momentum. The quantum tomography map
may be defined directly from the wave function or the density matrix. However it
was originally defined [8–12] in terms of the Wigner function W (q, p) as follows:

M (X, μ, ν) =
∫

exp [−ik(X − μq − νp)]W (q, p)
dk dq dp

(2π)2
. (23)

One sees that the formula (23) is identical to (12) of the classical case. For a pure
state, with wave function 	 (y), the quantum tomography map has the form [13]

M (X, μ, ν) = 1

2π |ν|
∣∣∣∣
∫

	 (y) exp

(
iμy2

2ν
− iyX

ν

)
dy

∣∣∣∣
2

. (24)

From Eq. (24) one sees that the tomography map is the amplitude squared of a
projection of the quantum state on the eigenvectors of the operator X̂ in (22).

The formula (23) can be inverted and, as in the classical case, theWigner function
can be expressed in terms of the tomography map [8],

W (q, p) = 1

2π

∫
M (X, μ, ν) exp [−i (μq + νp − X)] dμ dν dX . (25)

As was shown in [10], for systems with the Hamiltonian

H = p̂2

2
+ V (q̂) , (26)

the tomography map satisfies a quantum time-evolution equation

•
M − μ

∂

∂ν
M − i

[
V

(
− 1

∂/∂X

∂

∂μ
− i

ν

2

∂

∂X

)

− V

(
− 1

∂/∂X

∂

∂μ
+ i

ν

2

∂

∂X

)]
M = 0 , (27)

which is an alternative to the Schrödinger equation.
The evolution Eq. (27) can also be presented in the form

ẇ − μ
∂w

∂ν
− ∂V

∂x
(̃q) ν

∂

∂X
w + 2

∞∑

n=1

V 2n+1 (q̃)

(2n + 1)!
(

ν

2

∂

∂X

)2n+1

(−1)n+1w = 0 ,

(28)
where q̃ is given by (20) and

V 2n+1 (q̃) ≡ d2n+1V

dq2n+1
(q̃) .
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This evolution equation is in fact Moyal equation (9) in the tomography representa-
tion.

The tomography approach has another interesting application in another classical,
but non-commutative, context. In signal processing one dealswith time and frequency
which, as q̂ and p̂, are also non-commutative variables. Then, the tomography map,
being a positive quantity with a probability interpretation, provides a robust and
unambiguous tool for feature extraction in signal processing [13–18].

4 Applications

In this section one illustrates the use of the alternative quantum formulations in two
situations where the classical-quantum border is quite apparent. The deformation
approach is quite appropriate to obtain the quantum formulation, or quantum cor-
rections, to the kinetic equations, because the natural setting of such equations is the
phase space of positions and momenta. On the other hand, another notion that is very
useful in classicalmechanics is the notionof sensitive dependence to initial conditions
or chaotic behavior. In classical mechanics this notion finds a rigorous formulation
through the Lyapunov exponents of the dynamics. However, it is not obvious how to
correctly carry the notion of Lyapunov exponent to quantummechanics in the Hilbert
space formulation. By first defining classical Lyapunov exponents in a tomographic
formulation it becomes an easy matter to carry them to quantummechanics and then,
if needed, to carry the definition to Hilbert space. Of course this is possible because
all the alternative formulations are equivalent. To use one or another is a question of
computational and conceptual convenience. Another situation of current interest at
the classical-quantum border is the cooling of levitated nanoparticles [19].

4.1 Kinetic Equations and Quantum Corrections

A kinetic equation deals with the evolution of a probability density f (t, x, p) of
particles in phase space. The typical form is

∂

∂t
f + p

m
· ∇x f + Fext · ∇p f = S ( f ) (29)

the left hand side being a drift term defining the characteristics along which the
particles move between collisions and the right hand side a collision term. It is
therefore an equation involving a probability distribution in the (x, p) phase space.
In quantummechanics f (x, p) cannot be a classical probability distribution because
x and p are non-commuting variables. However f (x, p) may be interpreted as a
functional of elements in an algebra with a deformed product and, as discussed
before, this leads to the correct quantum results.
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It is therefore tempting, to obtain the quantum corrections to Eq. (29), by simply
replacing all products by deformed products. However, recalling that at the basis of
the deformation interpretation of quantummechanics is the deformation of a Poisson
algebra, it is more appropriate to deform the kinetic equation when their (canonical
or non-canonical) Hamiltonian structure is exhibited. This is the approach that will
be followed.

4.1.1 The Poisson–Vlasov Equation

The Poisson–Vlasov equation describing a collisionless plasma with purely electro-
static interactions is

∂ f

∂t
+ p

m
· ∂ f

∂x
− e

∂φ

∂x
· ∂ f

∂p
= 0 (30)

with

�φ = −e
∫

dp f (x, p, t) (31)

It is a non-canonical Hamiltonian system [20], with Hamiltonian,

HPV = 1

2

∫ ∣∣∣
p

2m

∣∣∣
2
f (x, p, t) dxdp + e

∫
dxφ (x)

∫
f (x, p, t) dp (32)

the time evolution of arbitrary phase-space functions given by

dF

dt
= [F, HPV ] (33)

the Poisson structure [·, ·] being

[F,G] =
∫

f

{
δF

δ f
,
δG

δ f

}
dxdp (34)

where {·, ·} stands for the usual Poisson bracket for functions of x and p

{A, B} =
∑

i

(
∂A

∂xi

∂B

∂pi
− ∂A

∂pi

∂B

∂xi

)
(35)

and the functional derivative δF
δ f being related to the Fréchet derivative by

(
D f F

) · f
′ =

∫
δF

δ f
f

′
dxdv (36)

Taking into attention that
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δ f (y, μ, t)

δ f (x, p, t)
= δ3 (y − x) δ3 (μ − p)

δHPV

δ f (x, p, t)
= 1

2m
|p|2 + eφ (x) (37)

and using Eq. (34) one obtains the classical Poisson–Vlasov equation

d f

dt
= [ f, HPV ] = − p

m
· ∇x f + e∇xφ · ∇p f (38)

For the quantum version all one has to do is to replace in Eq. (34) the Poisson bracket
(35) by the Moyal bracket (5).

d f

dt
=

∫
d3xd3 p f (x, p, t)

2

�
sin

(
�

2
P

)(
δ f

δ f
,
δHPV

δ f

)
(39)

P being the bidifferential operator in (4).
Of special interest is the leading quantum correction. The 6-dimensionalω matrix

in the symplectic form (3) hasωi,i+3 = −ωi+3,i = 1with all the other elements being
zero.Because δHPV

δ f (x,p,t) is quadratic in p, all terms inωi,i+3ω j, j+3ωk,k+3 vanish. Finally

one obtains in leading �
2 order,

d f

dt
= [

f, HPV
]
M = − p

m
· ∇x f + e∇xφ · ∇p f − e

�
2

24

3∑

i, j,k=1

∂3 f

∂pi ∂p j ∂pk

∂3φ

∂xi ∂x j ∂xk
+ O

(
�
4
)

(40)

4.1.2 The Maxwell–Vlasov Equation

The Maxwell–Vlasov equation,

∂ f

∂t
+ v · ∇x f + e

m

(
E + v × B

c

)
· ∇v f = 0 (41)

describing a classical collisionless plasma in an electromagnetic field, is also a non-
canonical Hamiltonian system. There are several variational formulations of the
Maxwell–Vlasov system, the most complete one being probably the one byMarsden
and Weinstein [21]. However, in their formulation, part of the dynamics is coded on
the Poisson structure rather than on the Hamiltonian and to apply the deformation
theory for the transition to quantum mechanics, one would also need to handle the
deformation of the electromagnetic field dynamics, not just the replacement of the
Poisson bracket involving position and momentum of the particles. Hence, because
here one only wants to obtain the quantum corrections to the f dynamics, it is more
convenient to use the Low [22] Hamiltonian,
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HMV =
∫

d3xd3 p

{
1

2m

(
p − e

c
A
)2 + eφ (x)

}
f (x, p, t) +

∫
d3x

(
E2 + B2

)

(42)
where E = −∇xφ − 1

c
∂A
∂t , B = ∇ × A in terms of the independent variables (φ, A).

The Poisson structure is the same as in (34) for the f dynamics. With this Hamil-
tonian

δHMV

δ f (x, p, t)
= 1

2m

(
p2 − e

c
(p · A + A · p) + e2

c2
A2

)
+ eφ (x) (43)

Then, using (34) and (35) one obtains for the classical equation

∂ f

∂t
= − 1

m

(
p − e

c
A
)

· ∇x f +
(
e

m
∇xφ − e

mc
p · ∇x A + e2

2mc2
∇x A

2

)
· ∇p f

= − 1

m

(
p − e

c
A
)

· ∇x f +
(

−eE − e

c
v × B − e

c

d A

dt

)
· ∇p f (44)

with

d A

dt
= ∂A

∂t
+ v · ∇x A

v = 1

m

(
p − e

c
A
)

(45)

Equation (44) is the same as (41) written in the variables (x, p) instead of (x, v). The
first set is the most convenient one because the Moyal bracket deformation acts on
these variables. Then, the quantum Maxwell–Vlasov equation becomes2

∂ f

∂t
=

∫
d3xd3 p f (x, p, t)

2

�
sin

(
�

2
P

)(
δ f

δ f
,
δHMV

δ f

)
(46)

and, computing the leading quantum corrections, one obtains

∂ f

∂t
== − 1

m

(
p − e

c
A
)

· ∇x f +
(

−eE − e

c
v × B − e

c

d A

dt

)
· ∇p f

− e�2

24

3∑

i, j,k=1

∂3 f

∂pi∂p j∂pk

∂3

∂xi∂x j∂xk

(
φ + e

2mc2
A2

)

+ e�2

24mc

3∑

i, j,k=1

(
∂3 f

∂pi∂p j∂pk
p · ∂3A

∂xi∂x j∂xk
− 3

∂3 f

∂xi∂p j∂pk

∂2Ak

∂x j∂xk

)
+ O

(
�
4
)

(47)

2Notice that in the Hamiltonian, products should also be replaced by ∗-products. However p ∗ A +
A ∗ p = 2p · A.
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4.2 A Quantum Lyapunov Exponent

Bounded classical systems that are chaotic, display exponential growth of initial
perturbations and other interesting long-time asymptotics, like exponential decay
of correlations. In contrast, quantum Hamiltonians of bounded systems with time-
independent potentials, having discrete spectrum, their wave functions are almost
periodic functions. For this reason the work on “quantum chaos” has shifted from
consideration of long-time properties to the statistics of energy levels of quantum
systems with a chaotic classical counterpart.

However, quantum systemswith bounded configuration space but time-dependent
interactions (for example particles in an accelerator subjected to electromagnetic
kicks or the systems used in quantum control) may have continuous spectrum. There-
fore the estimation and control, of the rate of growth of the perturbedmatrix elements
of observables, becomes an issue of both theoretical and practical concern.

In classicalmechanics themost important asymptotic indicator of chaotic behavior
is the Lyapunov exponent (an ergodic invariant). Therefore a natural first step to
discuss rates of growth in quantum mechanics seems to be the construction of a
quantum Lyapunov exponent.

The tomography approach, because of the similarity of its structure in the classical
and the quantum cases, seems to be an appropriate setting to carry out this construc-
tion. As a precondition it is necessary to carry the definition of Lyapunov exponent,
usually defined in terms of orbits and tangent maps, to a definition in terms of densi-
ties. This was carried out in [23]. Given an initial density ρ (x, p, t = 0) ≡ ρ (x, p)
for a classical particle, let it have a general time evolution defined by a smooth kernel

ρ (x, p, t) =
∫

K
(
x, p, x ′, p′, t

)
ρ
(
x ′, p′) dx ′ dp′. (48)

The evolution of the distribution ρ (x, p, t), described by Eq. (48), is equivalent to
the action of the Frobenius–Perron operator used in [23, 24]. Consider now a small
perturbation in the initial condition

ρ̃ (x, p) = ρ (x, p) + ε (n∇) δ(q) δ(p) , (49)

where

n = (n1, n2) , n2 = 1 , ∇ =
(

∂

∂x
,

∂

∂p

)
,

and

(n∇) = n1
∂

∂x
+ n2

∂

∂p
.

The perturbed initial density evolves like
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ρ (x, p, t) =
∫

K
(
x, p, x ′, p′, t

) [
ρ
(
x ′, p′) + ε

(
n∇′) δ(x ′) δ(p′)

]
dx ′ dp′,

(50)
where

∇′ =
(

∂

∂x ′ ,
∂

∂p′

)
.

Let us now compare the expectation values, for example, of the position of the
perturbed and unperturbed initial densities at time t

�x(t) =
∫

x [ρ̃ (x, p, t) − ρ (x, p, t)] dx dp , (51)

which equals

�x(t) = ε

∫
xK

(
x, p, x ′, p′, t

) (∇′n
)
δ(x ′)δ(p′) dx ′ dp′. (52)

In order to obtain the Lyapunov exponent one computes

λ = lim
t→∞

1

t
log

∣∣∣
�x(t)

�x(0)

∣∣∣ . (53)

leading to

λ = lim
t→∞

1

t

{
log | ε

∫
xK

(
x, p, x ′, p′, t

)

× (∇′n
)
δ(x ′)δ(p′) dx ′ dp′ − log | �x(0) |} . (54)

To translate this procedure to the tomography framework of classical mechanics, the
initial probability density is transformed to an initial tomography map

ρ (x, p) → M (X, μ, ν, t = 0) ≡ M (X, μ, ν) . (55)

The density δ (x − x0) δ (p − p0) is mapped to the tomography map

Mδ (X, μ, ν) = δ (X − μq0 − νp0) , (56)

and the perturbed term

ρ̃ (x, p) − ρ (x, p) = (n∇) δ (x − x0) δ (p − p0) (57)

is mapped to the tomographic perturbation

Mη (X, μ, ν) = (n1μ + n2ν) δ′ (X − μq0 − νp0) , (58)
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The unperturbed and perturbed initial tomography maps evolve with the classical
propagator Πcl

(
X, μ, ν, X ′, μ′, ν ′, t2, t1

)
that connects the maps at times t1 and

t2 (t2 > t1)

M (X, μ, ν, t2) =
∫

Πcl
(
X, μ, ν, X ′, μ′, ν ′, t2, t1

)
M

(
X ′, μ′, ν ′, t1

)
dX ′ dμ′ dν ′.

(59)
the propagator satisfying the equation

∂Πcl

∂t2
− μ

∂

∂ν
Πcl − ∂V

∂x
(q̃) ν

∂

∂X
Πcl

= δ (t2 − t1) δ
(
X − X ′) δ

(
μ − μ′) δ

(
ν − ν ′) .

hence,

Mη (X, μ, ν, t) =
∫

Πcl
(
X, μ, ν, X ′, μ′, ν ′, t

)

× (
n1μ

′ + n2ν
′) δ′ (X ′ − μ′q0 − ν ′ p0

)
dX ′ dμ′ dν ′. (60)

The position perturbations at time zero and time t are

�x(0) = ε

∫
Mη (X, μ, ν) ei Xδ′(μ) δ(ν) dX dμ dν

�x(t) = ε

∫
Mη (X, μ, ν, t) ei Xδ′(μ) δ(ν) dX dμ dν

and by replacement in (53) the classical Lyapunov exponent is expressed as a function
of the tomography maps.

For the quantum Lyapunov exponent all one has to do is to obtain the quantum
values of �x(0) and �x(t). This is obtained by replacing, in the Eqs. (59) and (60),
the classical by the quantum propagator which satisfies the equation

∂Π

∂t2
− μ

∂Π

∂ν
− ∂V

∂x
(q̃) ν

∂Π

∂X
+ 2

∞∑

n=1

V 2n+1 (q̃)

(2n + 1)!
(

ν

2

∂

∂X

)2n+1

(−1)n+1Π

= δ (t2 − t1) δ
(
X − X ′) δ

(
μ − μ′) δ

(
ν − ν ′) , (61)

the quantum Lyapunov exponent being also obtained from (53).
After some algebra one arrives at the Lyapunov exponent expression in the

quantum-mechanical case,

λ = lim
t→∞

1

t
log |

∫
dX dμ′ dν ′ X

(
n1μ

′ + n2ν ′)

× ∂Π

∂X ′
(
X, 1, 0, X ′ → μ′q0 + ν ′ p0, μ′, ν ′, t

) | . (62)
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A satisfactory construction was thus achieved [25] in the sense that the phase-space
observables that are used are exactly the same in classical and quantum mechanics.
The only difference between the classical and the quantum exponent lies in the time
evolution dynamics.

It is of some interest to express this results in the Hilbert space framework of
quantummechanics [26]. The tomographic maps being related to traces of operators,
it turns out that the quantum Lyapunov exponent measures the rate of growth of the
trace of position and momentum observables starting from a singular initial density
matrix. A positive Lyapunov exponent would correspond to exponential growth of
these traces. However, the same quantities may serve to characterize other types of
growth, leading to a generalized notion of quantum sensitive dependence.

There are examples where exponential rates of growth (as in classical chaos)
are also found in quantum systems [25]. However, in many other cases, quantum
mechanics seems to have a definite taming effect on classical chaos. Therefore,
a generalized notion of quantum sensitive dependence, corresponding to rates of
growth milder than exponential, might be of interest to classify different types of
quantum complexity or to characterize the degree of accuracy achievable in quantum
control.

As a first step rewrite the result for the quantum Lyapunov exponent along the
phase-space vector v = (ν1ν2)

λv = lim
t→∞

1

t
log

∥∥∥∥
∫

dn X dnμ dnνei X•1
((∇μ

∇ν

)
δn(μ)δn (ν)

)
Mt (X, μ, ν)

∥∥∥∥

Mt (X, μ, ν) =
∫

Π
(
X, μ, ν, X ′, μ′, ν′, t, 0

)
M0 (X, μ, ν) dX ′ndμ′ndν′n

M0

(
X

′
, μ

′
, ν

′) = ((
v1 � μ′ + v2 � ν′) • ∇X ′

)
δn

(
X ′ − μ′q0 − ν′ p0

)
(63)

with (a � b)i = aibi .
For a system with Hamiltonian

H = p2

2
+ V (q) , (64)

the evolution equation for the quantum propagator of the tomographic densities is

∂Π
∂t − μ • ∇νΠ − ∇x V (q̃) • (ν � ∇XΠ)

+ 2
�

∑∞
n=1(−1)n+1

(
�

2

)2n+1 ∇i1 ···i2n+1V (q̃)

(2n+1)! (ν � ∇X )i1 · · · (ν � ∇X )i2n+1
Π

= 0
(65)

with initial condition

lim
t→t0

Π
(
X, μ, ν, X ′, μ′, ν ′, t, t0

) = δn
(
X − X ′) δn

(
μ − μ′) δn

(
ν − ν ′) (66)

reducing for � = 0 to the classical evolution equation.
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In the tomographic formulation, classical and quantum mechanics are both
described by a set of positive probability distributions Mt (X, μ, ν), the �-
deformation appearing only in the time-evolution. It is this fact that allows the notion
of Lyapunov exponent to be carried overwithout ambiguity fromclassical to quantum
mechanics. However, to relate the Lyapunov exponent to the behavior of operator
matrix elements and the spectral properties of the Hamiltonian, it is more convenient
to rewrite it as a functional of the density matrix ρ

(
x, x

′)
. The first step is to consider

the Fourier transform Gt (μ,μ) of the tomographic density Mt (X, μ, ν)

Gt (μ, ν)
.= Gt (1, μ, ν) =

∫
dn X ei X•1Mt (X, μ, ν) (67)

and perform the integrals in (63) to obtain

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
∇μGt (μ, ν) |μ=ν=0

∇νGt (μ, ν) |μ=ν=0

∥∥∥∥ (68)

Now, using the relation between the tomographic densities and the density matrix,
namely

Gt (μ, ν) =
(

1

2π

)n ∫
dn X dn pdnxdnx

′
e
i
(
X•1−p•

(
x−x

′))

ρt

(
x, x

′)
(69)

δn

(
X − μ �

(
x + x

′

2

)
+ v � p

)

one easily obtains

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
Tr {ρt x}
Tr {ρt p}

∥∥∥∥ (70)

the density matrix at time zero (corresponding to M0
(
X

′
, μ

′
, ν

′)
in Eq. (63)) being

ρ0

(
x, x

′) = −e
ip0•

(
x−x

′) {
(v1 • ∇) δ

n
(
q0 − x + x

′

2

)
+ iv2 •

(
x − x

′)
δn

(
q0 − x + x

′

2

)}

(71)
Equation (70) means that the quantum Lyapunov exponent measures the exponential
rate of growth of the expectation values of position and momentum, starting from
the initial singular perturbation ρ0. This is a rather appealing and intuitive form for
the Lyapunov exponent.

Using the time-dependent operators in the Heisenberg picture

xH (t) = U †xU
pH (t) = U † pU

(72)
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one has an equivalent form for λ→
v

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
Tr

′ {ρ0xH (t)}
Tr

′ {ρ0 pH (t)}
∥∥∥∥ (73)

where we have also defined

Tr
′ {ρ0xH (t)} = Tr {ρ0xH (t)} /Tr {ρ0xH (0)}

Whenever ρ0xH (t) is a trace class operator, the term corresponding to Tr{ρ0xH (0)}
has no contribution in the t → ∞ limit. On the other hand, by taking the appropriate
cut-off and a limiting procedure, the above expression may also make mathematical
sense even in some non-trace class cases.

5 Quantizers and Dequantizers: An Unified View of
Alternative Quantum Formulations

Tomographymapsmaybe framednot only as amplitudes of projections on a complete
basis of eigenvectors of a family of operators, as in (24), but also as operator symbols
[27]. That is, as a map of operators to a space of functions where the operators non-
commutativity is replaced by a modification of the usual product to a star-product.

Let Â be an operator in Hilbert spaceH and Û (x), D̂(x) two families of operators
called dequantizers and quantizers, respectively, such that

Tr
{
Û (x)D̂(x′)

}
= δ(x − x′) (74)

The labels x (with components x1, x2, . . . xn) are coordinates in a linear space V
where the functions (operator symbols) are defined. Someof the coordinatesmay take
discrete values, then the delta function in (74) should be understood as a Kronecker
delta. Provided the property (74) is satisfied, one defines the symbol of the operator
Â by the formula

f A(x) = Tr
{
Û (x) Â

}
, (75)

assuming the trace to exist. In view of (74), one has the reconstruction formula

Â =
∫

f A(x)D̂(x) dx (76)

The role of quantizers and dequantizers may be exchanged. Then
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f dA (x) = Tr
{
D̂(x) Â

}
(77)

is called the dual symbol of f A(x) and the reconstruction formula is

Â =
∫

f dA (x)Û (x) dx (78)

Symbols of operators can be multiplied using the star-product kernel as follows

f A(x) � fB(x) =
∫

f A(y) fB(z)K (y, z, x) dy dz (79)

the kernel being

K (y, z, x) = Tr
{
D̂(y)D̂(z)Û (x)

}
(80)

The star-product is associative,

( f A(x) � fB(x)) � fC(x) = f A(x) � ( fB(x) � fC(x)) (81)

this property corresponding to the associativity of the product of operators in Hilbert
space.

With the dual symbols the trace of an operator may be written in integral form

Tr
{
Â B̂

}
=

∫
f dA (x) fB(x) dx =

∫
f dB (x) f A(x) dx. (82)

For two different symbols f A(x) and f A(y) corresponding, respectively, to the
pairs (Û (x),D̂(x)) and (Û1(y),D̂1(y)), one has the relation

f A(x) =
∫

f A(y)K (x, y) dy, (83)

with intertwining kernel

K (x, y) = Tr
{
D̂1(y)Û (x)

}
(84)

Let now a wave function be identified with the projection operator Πψ on the
function ψ (t), denoted by

Πψ = |ψ〉 〈ψ | (85)

Then the tomography maps (tomograms), and also other transforms, are symbols of
the projection operators for several choices of quantizers and dequantizers.

Some examples:
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Denote position andmomentum by q and p (for signal processing the correspond-
ing set of non-commuting variable would be t and ω).

# The Wigner–Ville function: is the symbol of | ψ〉〈ψ | corresponding to the
dequantizer

Û (x) = 2D̂(2α)P̂, α = q + i p√
2

(86)

where P̂ is the inversion operator

P̂ψ(q) = ψ(−q) (87)

and D̂(γ ) is a “displacement” operator

D̂(γ ) = exp

[
1√
2
γ

(
q − ∂

∂q

)
− 1√

2
γ ∗

(
q + ∂

∂q

)]
(88)

The quantizer operator is

D̂(x) := D̂(q, p) = 1

2π
Û (q, p), (89)

The Wigner function is

W (q, p) = 2Tr
{
| ψ〉〈ψ | D̂(2α)D̂

}
(90)

or, in integral form

W (q, p) = 2
∫

ψ∗(q)D̂(2α)ψ(−q) dq (91)

# The symplectic tomogram (position-momentum or time-frequency in signal
processing) tomogram of | ψ〉〈ψ | corresponds to the dequantizer

Û (x) := Û (X, μ, ν) = δ
(
X 1̂ − μq̂ − ν p̂

)
, (92)

Here the notation δ
(
X 1̂ − μq̂ − ν p̂

)
stands for the projector on the eigenvector of

μq̂ + ν p̂ corresponding to the eigenvalue X and

q̂ψ(q) = qψ(q), p̂ψ(t) = −i
∂

∂q
ψ(q) (93)

and X, μ, ν ∈ R. The quantizer of the symplectic tomogram is
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D̂(x) := D̂(X, μ, ν) = 1

2π
exp

[
i
(
X 1̂ − μq̂ − ν p̂

)]
(94)

# The optical tomogram is the same as above for the case

μ = cos θ, ν = sin θ. (95)

Thus the optical tomogram is

M(X, θ) = Tr
{
| ψ〉〈ψ | δ

(
X 1̂ − μq̂ − ν p̂

)}

= 1

2π

∫
ψ∗(q)eikX exp

[
ik

(
X − q cos θ + i

∂

∂q
sin θ

)]
ψ(q) dq dk

= 1

2π | sin θ |
∣∣∣∣
∫

ψ(q) exp

[
i

(
cot θ

2
q2 − Xq

sin θ

)]
dq

∣∣∣∣
2

. (96)

One important feature of the formulation of tomograms as operator symbols is
that one may work with deterministic functions ψ (q) as easily as with probabilistic
ones. In this latter case the projector in (85) would be replaced by

Πp =
∫

pμ

∣∣ψμ

〉 〈
ψμ

∣∣ dμ (97)

with
∫
pμdμ = 1, the tomogram being the symbol of this new operator.

This also provides a framework for an algebraic formulation of signal processing,
perhaps more general than the one described in [28]. There, a signal model is a triple
(A ,M ,�) A being an algebra of linear filters,M aA -module and � a map from
the vector space of signals to the module. With the operator symbol interpretation,
both deterministic or random signals and linear or nonlinear transformations on
signals are operators. By the application of the dequantizer (Eq.75) they are mapped
to functions, the filter operations becoming star-products.
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