Structure-generating mechanisms in agent-based models

Rui Vilela Mendes
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena.
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena
- Pattern detected \rightarrow (♦ obtain a compressed description ♦ predict the outcome)

[Prediction through compressed descriptions is apparently the way many living beings deal with the external world, ants included. Reznikova and Ryabko; Problems Inf. Transmission 22 (1986) 245]
<table>
<thead>
<tr>
<th>No.</th>
<th>Sequence of Turns to Syrup</th>
<th>Mean Time Sec.</th>
<th>Sample Standard Deviation</th>
<th>Number of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LLL</td>
<td>72</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>RRR</td>
<td>75</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>LLLLLL</td>
<td>84</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>RRRRRRR</td>
<td>78</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>LLLLLL</td>
<td>90</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>RRRRRRR</td>
<td>88</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>LRLRLR</td>
<td>130</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>RRLRL</td>
<td>135</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>LLR</td>
<td>69</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>LRLL</td>
<td>100</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>RLLL</td>
<td>120</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>RRLRL</td>
<td>150</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>RLRRLR</td>
<td>180</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>RRRRRR</td>
<td>220</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>LRLLRL</td>
<td>200</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena

- Pattern detected \(\rightarrow\)
 - obtain a compressed description
 - predict the outcome

[Prediction through compressed descriptions is apparently the way many living beings deal with the external world, ants included (Reznikova and Ryabko; Problems Inf. Transmission 22 (1986) 245)]

- **Role of patterns and structures**
 - Information processing tool for the observer
 - Determining factor in the coevolutionary process of composite systems
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena
- Pattern detected \rightarrow (♦ obtain a compressed description ♦ predict the outcome)

[Prediction through compressed descriptions is apparently the way many living beings deal with the external world, ants included Reznikova and Ryabko; Problems Inf. Transmission 22 (1986) 245]

- **Role of patterns and structures**
 - Information processing tool for the observer
 - Determining factor in the coevolutionary process of composite systems

- **Understanding patterns (or structures)**
 - Time series prediction
 - Stochastic model identification
 - Dynamical system reconstruction
 - Coding
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena
- Pattern detected \(\rightarrow\) (\(\diamondsuit\) obtain a compressed description \(\diamondsuit\) predict the outcome)

[Prediction through compressed descriptions is apparently the way many living beings deal with the external world, ants included; Reznikova and Ryabko; Problems Inf. Transmission 22 (1986) 245]

- **Role of patterns and structures**
 - Information processing tool for the observer
 - Determining factor in the coevolutionary process of composite systems

- **Understanding patterns (or structures)**
 - Time series prediction
 - Stochastic model identification
 - Dynamical system reconstruction
 - Coding

- Measures of complexity for patterns
Organization, structure and patterns

- Organization and structure are ubiquitous in natural phenomena
- Pattern detected → ♦ obtain a compressed description ♦ predict the outcome

[Prediction through compressed descriptions is apparently the way many living beings deal with the external world, ants included Reznikova and Ryabko; Problems Inf. Transmission 22 (1986) 245]

- **Role of patterns and structures**
 - Information processing tool for the observer
 - Determining factor in the coevolutionary process of composite systems

- **Understanding patterns (or structures)**
 - Time series prediction
 - Stochastic model identification
 - Dynamical system reconstruction
 - Coding

- Measures of complexity for patterns
- Computational mechanics
Why is the dynamical behavior of a composite system qualitatively different from the dynamics of the components in isolation?
Dynamical mechanisms leading to collective structures

- Why is the dynamical behavior of a composite system qualitatively different from the dynamics of the components in isolation?
- Collective structure formation in systems composed of many agents in interaction, each one of which has *simple* dynamics. *(simple to describe in law, but not necessarily with simple orbits. Small logic depth, but capable of generating orbits with high Kolmogorov complexity)*

Example:

\[x_{n+1} = px_n \pmod{.1} \]

- Invariant measure absolutely continuous with respect to Lebesgue,
- Positive Lyapunov exponents and Kolmogorov entropy,
- Orbits of all types
Dynamical mechanisms leading to collective structures

- Why is the dynamical behavior of a composite system qualitatively different from the dynamics of the components in isolation?
- Collective structure formation in systems composed of many agents in interaction, each one of which has simple dynamics. *(simple to describe in law, but not necessarily with simple orbits. Small logic depth, but capable of generating orbits with high Kolmogorov complexity)*

Example:

\[x_{n+1} = px_n \pmod{1} \]

- Invariant measure absolutely continuous with respect to Lebesgue,
- Positive Lyapunov exponents and Kolmogorov entropy,
- Orbits of all types

Mechanisms

1. Sensitive-dependence and convex coupling
2. Sensitive-dependence and extremal dynamics
3. Interaction through a collectively generated field. (Multistability and evolution)
Bernoulli agents on circle with nearest-neighbour convex coupling

\[x_i(t + 1) = (1 - c) f(x_i(t)) + \frac{c}{2} (f(x_{i+1}(t)) + f(x_{i-1}(t))) \] \hspace{1cm} (1)

\[f(x) = 2x \mod 1 \] and periodic boundary conditions
Structure-generation through density-dependent coupling

- Bernoulli agents on circle with nearest-neighbour convex coupling
 \[x_i(t + 1) = (1 - c)f(x_i(t)) + \frac{c}{2} \left(f(x_{i+1}(t)) + f(x_{i-1}(t)) \right) \]
 \[f(x) = 2x \mod 1 \] and periodic boundary conditions

- Agents assumed to live in a limited space with the intensity of the coupling a function of the total number of agents \(N \), for example
 \[c = c_m \left(1 - e^{-\alpha N} \right) \]
Structure-generation through density-dependent coupling

- Bernoulli agents on circle with nearest-neighbour convex coupling

 \[
 x_i(t + 1) = (1 - c)f(x_i(t)) + \frac{c}{2} \left(f(x_{i+1}(t)) + f(x_{i-1}(t)) \right)
 \]

 (1)

 \[f(x) = 2x \mod 1\] and periodic boundary conditions

- Agents assumed to live in a limited space with the intensity of the coupling a function of the total number of agents \(N\), for example

 \[c = c_m \left(1 - e^{-\alpha N} \right)\]

 (2)

- Coupling is also dynamical by a reproduction and death mechanism
 - After each \(R\) time cycles, agents with \(x_i > 0.5\) are coded 1 and those with \(x_i \leq 0.5\) are coded 0.
 - Configurations 0110 : candidates for reproduction with probability \(p_r\)
 - Configurations 0000 : candidates for death with probability \(p_m\)
 - Reproduction : transition 0110 \(\rightarrow\) 0X110 , the state of the new agent \(X\) chosen at random in the interval (0, 1)
 - Death : transition 0000 \(\rightarrow\) 000
Without coupling 0110 and 0000 appear, on average, the same number of times. The population density depends only on the relative values of p_r and p_m.

\[\lambda_k = \log_2 \left(\frac{1}{c} \right) + \frac{2}{c} \cos \frac{2\pi k}{N} \]

All positive for $c < 0.5$ but above this value structures are created when each Lyapunov exponent crosses zero. Collective modes have different probabilities, a new collective mode being frozen each time a Lyapunov exponent reaches the zero value. The eigenvectors corresponding to each exponent are θ_k with $\theta_k = \frac{2\pi n}{k}$, $k = 0, 1, \ldots, N - 1$. Therefore $y_k = \frac{1}{N} \sum_{n=1}^{N} \cos \frac{2\pi kn}{N}$ are the coordinates of the collective eigenmodes.
Without coupling 0110 and 0000 appear, on average, the same number of times. The population density depends only on the relative values of p_r and p_m.

With coupling: correlations, generated by coupling, influence the inter-agent evolution mechanism.
Without coupling 0110 and 0000 appear, on average, the same number of times. The population density depends only on the relative values of \(p_r \) and \(p_m \).

With coupling: correlations, generated by coupling, influence the inter-agent evolution mechanism.

The Lyapunov exponents for the dynamical system in (1) are

\[
\lambda_k = \log \left\{ 2 (1 - c) + 2c \cos \left(\frac{2\pi}{n} k \right) \right\} \quad k = 0, \cdots, N - 1
\]

All positive for \(c < 0.5 \) but above this value structures are created when each Lyapunov exponent crosses zero. Collective modes have different probabilities, a new collective mode being frozen each time a Lyapunov exponent reaches the zero value.
Structure-generation through density-dependent coupling

- Without coupling 0110 and 0000 appear, on average, the same number of times. The population density depends only on the relative values of p_r and p_m.
- With coupling: correlations, generated by coupling, influence the inter-agent evolution mechanism.
- The Lyapunov exponents for the dynamical system in (1) are

$$\lambda_k = \log \left\{ 2 \left(1 - c\right) + 2c \cos \left(\frac{2\pi}{n} k\right) \right\} \quad k = 0, \ldots, N - 1$$

All positive for $c < 0.5$ but above this value structures are created when each Lyapunov exponent crosses zero. Collective modes have different probabilities, a new collective mode being frozen each time a Lyapunov exponent reaches the zero value.
- The eigenvectors corresponding to each exponent are $\{e^{i n \theta_k}\}$ with $\theta_k = \frac{2\pi}{N} k$, $k = 0, \ldots, N - 1$. Therefore $y_k = \frac{1}{N} \sum_{n=1}^{N} \cos \left(\frac{2\pi}{N} kn\right)$ are the coordinates of the collective eigenmodes.
Structure-generation through density-dependent coupling

Average energy $E_k = \langle y_k^2 \rangle$ of the collective modes (mode $k = 0$ not shown)
Structure-generation through density-dependent coupling

Evolution of the population plotted against the reproduction-death cycle number \((p_r = 1\) and \(p_m = 0.5\)). Population controlled by collective structures.
Structure-generation through density-dependent coupling

Relative probability of each one of the 16 different configurations of four neighbours \((x_1 x_2 x_3 x_4)\), labelled by \(x_1 + 2 \times x_2 + 4 \times x_2 + 8 \times x_2\)

- \(c=0\)
- \(c=0.15\)
- \(c=0.25\)
- \(c=0.35\)
- \(c=0.5\)
- \(c=1\)
Interaction through collective variables

- Interaction mediated by a *collective variable*, that is an aggregate quantity that *the agents themselves create*
Interaction through collective variables

- Interaction mediated by a *collective variable*, that is an aggregate quantity that *the agents themselves create*
- In most models there is also an *evolution mechanism*
Interaction through collective variables

- Interaction mediated by a *collective variable*, that is an aggregate quantity that *the agents themselves create*
- In most models there is also an *evolution mechanism*
- Multistability and evolution:
 In some cases, the essential mechanism, self-organizing the system, is the evolution (a slow dynamics), the fast dynamics only provides the multi-attractor background which is selected by the slow evolution.
Coupled map minority model

(Inspired on Brian Arthur’s El Farol model)

- Continuous version:
 - Fix a number c (the cut) to divide the interval $[0,1]$
 - Each agent chooses a value x_i between 0 and 1
 - The average $x_m = \frac{1}{N} \sum_i x_i$ is computed
Coupled map minority model

(Inspired on Brian Arthur’s El Farol model)

- **Continuous version:**
 Fix a number c (*the cut*) to divide the interval $[0,1]$
 Each agent chooses a value x_i between 0 and 1
 The average $x_m = \frac{1}{N} \sum_i x_i$ is computed

- **Winning agents:** those for which x_i lie on the side opposite to x_m

Payoff of agent i at time t:

$P_i(t) = \frac{1}{2} \left(1 - \text{sign}\left\{ (x_m(t) - c) (x_i(t) - c) \right\} \right)$
Coupled map minority model

(Inspired on Brian Arthur’s El Farol model)

- **Continuous version:**
 Fix a number c (*the cut*) to divide the interval $[0,1]$
 Each agent chooses a value x_i between 0 and 1
 The average $x_m = \frac{1}{N} \sum_i x_i$ is computed

- **Winning agents:** those for which x_i lie on the side opposite to x_m

 Payoff of agent i at time t:
 $P_i(t) = \frac{1}{2} \left(1 - \text{sign} \left\{ (x_m(t) - c)(x_i(t) - c) \right\} \right)$

- **Agents’ strategy**
 \[x_i(t+1) = f_i(x_m(t), \alpha_i) \]

 Here f_i is either a shifted tent map
 \[f_i(x) = 2 + 2x \text{sign} \left(\frac{1}{2} - (x + \alpha_i) \right) \pmod{1} \]

 or a shifted p-ary multiplication
 \[f_i(x) = p(x + \alpha_i) \pmod{1} \]
Coupled map minority model

- α_i is a number between zero and one and at $t = 0$ the strategies (the α_i’s) are random
Coupled map minority model

- α_i is a number between zero and one and at $t = 0$ the strategies (the α_i’s) are random
- **Evolution**: Each r time steps k agents have their strategies modified
 # The k' agents with less earnings in that period have new (random) α’s
 # The remaining $k - k'$ copy the α’s of the $k - k'$ best performers with a small error

The behavior of the model:
- Approach to a regime where the average value x_m oscillates around the value of the cut c (even when c is very different from the random value 0.5).
Coupled map minority model

- α_i is a number between zero and one and at $t = 0$ the strategies (the α_i’s) are random.

- **Evolution:** Each r time steps k agents have their strategies modified.
 - The k' agents with less earnings in that period have new (random) α’s.
 - The remaining $k - k'$ copy the α’s of the $k - k'$ best performers with a small error.

- **Behavior of the model:** Approach to a regime where the average value x_m oscillates around the value of the cut c (even when c is very different from the random value 0.5).
Coupled map minority model

- α_i is a number between zero and one and at $t = 0$ the strategies (the α_i’s) are random

- **Evolution**: Each r time steps k agents have their strategies modified
 - The k' agents with less earnings in that period have new (random) α’s
 - The remaining $k - k'$ copy the α’s of the $k - k'$ best performers with a small error

- **Behavior of the model**: Approach to a regime where the average value x_m oscillates around the value of the cut c (even when c is very different from the random value 0.5)

- $P =$ fraction of winning agents

$$P = \frac{1}{N} \sum_i P_i$$
Coupled map minority model

Shifted tent map
\((N = 100, k = r = 10 \text{ and } k' = 3)\)
Coupled map minority model

2-ary multiplication

(a) (b) (c) (d)
Coupled map minority model

- $x_m = 0.694$ and $\sigma(x_m) = 0.02$
- ($x_m = 0.5$ and $\sigma(x_m) = 0.288$ for random choice)
- x_m close to the cut maximizes the percentage of winning agents
- $\overline{P} = 0.488$ and $\sigma(P) = 0.132$
Coupled map minority model

- $x_m = 0.694$ and $\sigma(x_m) = 0.02$
 $(x_m = 0.5$ and $\sigma(x_m) = 0.288$ for random choice)$
- x_m close to the cut maximizes the percentage of winning agents
 $\bar{P} = 0.488$ and $\sigma(P) = 0.132$
- The Lyapunov exponents for the dynamics of x_m and for the dynamics of the agents control the fluctuations
Coupled map minority model

- $\bar{x}_m = 0.694$ and $\sigma(x_m) = 0.02$
 ($\bar{x}_m = 0.5$ and $\sigma(x_m) = 0.288$ for random choice)
- x_m close to the cut maximizes the percentage of winning agents
 $\bar{P} = 0.488$ and $\sigma(P) = 0.132$
- The Lyapunov exponents for the dynamics of x_m and for the dynamics of the agents control the fluctuations
- The dynamics of x_m is

$$x_m(t + 1) = \frac{1}{N} \sum_i f_i (x_m(t) + \alpha_i)$$

the Lyapunov exponent being

$$\lambda = \lim_{k \to \infty} \frac{1}{k} \log \left(\frac{1}{N} \left| \sum f_i'(x_m(t) + \alpha_i) \right| \cdots \frac{1}{N} \left| \sum f_i'(x_m(t + k) + \alpha_i) \right| \right)$$
Coupled map minority model

- *For the tent map*: for a large number agents, uniform distribution of the \(\alpha \)'s, \(\frac{1}{N} |\sum_i f'_i| \) of order \(\frac{1}{\sqrt{N}} \), \(\implies \lambda \) negative of order \(-\frac{1}{2} \log N \)
Coupled map minority model

- **For the tent map:** for a large number of agents, uniform distribution of the α's, $\frac{1}{N} \left| \sum_i f'_i \right|$ of order $\frac{1}{\sqrt{N}}$, $\implies \lambda$ negative of order $-\frac{1}{2} \log N$

- **For the p-ary map** $\lambda = p$.
Coupled map minority model

- **For the tent map**: for a large number of agents, uniform distribution of the α's, $\frac{1}{N} |\sum_i f_i'|$ of order $\frac{1}{\sqrt{N}}$, $\implies \lambda$ negative of order $-\frac{1}{2} \log N$
- **For the p-ary map** $\lambda = p$.
- **Dynamics of the agents**: Jacobian matrix is

$$DT = \begin{pmatrix} \frac{1}{N} f'_1 & \frac{1}{N} f'_1 & \cdots & \frac{1}{N} f'_1 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{N} f'_N & \frac{1}{N} f'_N & \cdots & \frac{1}{N} f'_N \end{pmatrix}$$
Coupled map minority model

- *For the tent map*: for a large number of agents, uniform distribution of the α’s, $\frac{1}{N} |\sum_i f'_i|$ of order $\frac{1}{\sqrt{N}}$, $\implies \lambda$ negative of order $-\frac{1}{2} \log N$
- *For the p-ary map*: $\lambda = p$.
- *Dynamics of the agents*: Jacobian matrix is

$$DT = \begin{pmatrix}
\frac{1}{N} f'_1 & \frac{1}{N} f'_1 & \cdots & \frac{1}{N} f'_1 \\
\vdots & \vdots & & \vdots \\
\frac{1}{N} f'_N & \frac{1}{N} f'_N & \cdots & \frac{1}{N} f'_N
\end{pmatrix}$$

- Eigenvalues of $(DT^k)^T (DT^k)$ are $N - 1$ zeros and one equal to

$$N \left(\frac{1}{N^2} \sum_i f_i'^2 \right) \left(\frac{1}{N} \sum_i f_i' \right)^2 \cdots \left(\frac{1}{N} \sum_i f_i' \right)^2$$

One non-trivial Lyapunov exponent identical to the Lyapunov exponent of the x_m dynamics.
Coupled map minority model

Features:

1. the evolution dynamics organizes the system (x_m around the cut)
2. the fast dynamics controls the nature of the fluctuations around this value
3. behavior of the collective variable around the average value is quite irregular. Compatible with the fast contraction of negative Lyapunov exponents because of sensitivity of the attractor to small changes of parameters
Coupled map minority model

- **Features:**
 1. The evolution dynamics organizes the system (x_m around the cut).
 2. The fast dynamics controls the nature of the fluctuations around this value.
 3. Behavior of the collective variable around the average value is quite irregular. Compatible with the fast contraction of negative Lyapunov exponents because of sensitivity of the attractor to small changes of parameters.

- **p-ary map:**
 Large fluctuations around the mean collective value
 \[\bar{x}_m = 0.554, \sigma(x_m) = 0.145, \bar{P} = 0.378 \text{ and } \sigma(P) = 0.223 \]
Coupled map minority model

- **Features:**
 1. The evolution dynamics organizes the system (x_m around the cut)
 2. The fast dynamics controls the nature of the fluctuations around this value
 3. Behavior of the collective variable around the average value is quite irregular. Compatible with the fast contraction of negative Lyapunov exponents because of sensitivity of the attractor to small changes of parameters

- **p-ary map:**
 - Large fluctuations around the mean collective value

 \[
 \bar{x}_m = 0.554, \quad \sigma(x_m) = 0.145, \quad \bar{P} = 0.378 \quad \text{and} \quad \sigma(P) = 0.223
 \]

- Non-periodic attractors.
Coupled map minority model

- **Features:**
 1. The evolution dynamics organizes the system (x_m around the cut)
 2. The fast dynamics controls the nature of the fluctuations around this value
 3. Behavior of the collective variable around the average value is quite irregular. Compatible with the fast contraction of negative Lyapunov exponents because of sensitivity of the attractor to small changes of parameters

- **p-ary map:**
 Large fluctuations around the mean collective value
 $\overline{x_m} = 0.554, \sigma(x_m) = 0.145, \overline{P} = 0.378$ and $\sigma(P) = 0.223$

- Non-periodic attractors.

- In conclusion: *self-organization is driven by the slow (evolution) dynamics on the attractor background supplied by the (fast) agent dynamics*
A market-like game

- **Collective variable**: stock prices (which the investors themselves influence through their investments)
A market-like game

- **Collective variable**: stock prices (which the investors themselves influence through their investments)
- **Evolution**: investors adjust their strategies in order to maximize profits
 - Set of investors playing against the market (effect on an existing market that is also influenced by other factors)
 - The rest of the market impact is represented by a stochastic process

\[
\log(p_t) = z_t + \eta_t + \Delta z_t
\]

\[p_t = \text{price of the traded asset at time } t\]

Objective: to increase the total wealth at the expense of the rest of the market.
A market-like game

- **Collective variable**: stock prices (which the investors themselves influence through their investments)
- **Evolution**: investors adjust their strategies in order to maximize profits
 - Set of investors playing against the market (effect on an existing market that is also influenced by other factors)
 - The rest of the market impact is represented by a stochastic process
- The change in the log price is
 \[
 z_{t+1} = f(z_t, w_t) + \eta_t
 \]

\[p_t = \text{price of the traded asset at time } t\]
\[z_t = \log(p_t)\]
A market-like game

- **Collective variable**: stock prices (which the investors themselves influence through their investments)
- **Evolution**: investors adjust their strategies in order to maximize profits
 - Set of investors playing against the market (effect on an existing market that is also influenced by other factors)
 - The rest of the market impact is represented by a stochastic process
- The change in the log price is
 \[z_{t+1} = f(z_t, w_t) + \eta_t \]

- \(p_t \) = price of the traded asset at time \(t \)
- \(z_t = \log(p_t) \)
- **Objective**: to increase the total wealth \(m_t + p_t \times s_t \) at the expense of the rest of the market.
A market-like game

- **Comparison with the minority model**
 \[z_t \leftrightarrow x_m \]
 \[\Delta_t = \sum_i \left(m^{(i)}_t + p_t \times s^{(i)}_t \right) - \sum_i \left(m^{(i)}_0 + p_0 \times s^{(i)}_0 \right) \leftrightarrow P \]
A market-like game

- **Comparison with the minority model**
 \[z_t \leftrightarrow x_m \]
 \[\Delta_t = \sum_i \left(m_t^{(i)} + p_t \times s_t^{(i)} \right) - \sum_i \left(m_0^{(i)} + p_0 \times s_0^{(i)} \right) \leftrightarrow P \]

- **Market impact function**
 Loglinear law
 \[z_{t+1} - z_t = \frac{\omega_t}{\lambda} + \eta_t \]
 \(\lambda \) is the liquidity
 Not valid for large orders
 \[z_{t+1} - z_t = \frac{\omega_t}{\lambda_0 + \lambda_1 |\omega_t|^{1/2}} + \eta_t \]
A market-like game

- **Comparison with the minority model**

 \[z_t \iff x_m \]

 \[\Delta_t = \sum_i \left(m_t^{(i)} + p_t \times s_t^{(i)} \right) - \sum_i \left(m_0^{(i)} + p_0 \times s_0^{(i)} \right) \iff P \]

- **Market impact function**

 Loglinear law

 \[z_{t+1} - z_t = \frac{\omega_t}{\lambda} + \eta_t \]

 \(\lambda \) is the *liquidity*

 Not valid for large orders

 \[z_{t+1} - z_t = \frac{\omega_t}{\lambda_0 + \lambda_1 |\omega_t|^{1/2}} + \eta_t \]

- **Agent strategies**

 Two types of informations are taken into account:

 The *misprice*

 \[z v_t - z_t = \log(v_t) - \log(p_t) \]
A market-like game

and the *price trend*

\[z_t - z_{t-1} = \log(p_t) - \log(p_{t-1}) \]
A market-like game

- and the *price trend*

\[z_t - z_{t-1} = \log(p_t) - \log(p_{t-1}) \]

- # Non-decreasing function \(f(x) \) such that \(f(-\infty) = 0 \) and \(f(\infty) = 1 \)

Two examples

\[
\begin{align*}
 f_1(x) &= \theta(x) \\
 f_2(x) &= \frac{1}{1 + \exp(-\beta x)}
\end{align*}
\]

Four-component vector \(\gamma \)

\[
\gamma_t = \begin{pmatrix}
 f(zv_t - z_t) f(z_t - z_{t-1}) \\
 f(zv_t - z_t) (1 - f(z_t - z_{t-1})) \\
 (1 - f(zv_t - z_t)) f(z_t - z_{t-1}) \\
 (1 - f(zv_t - z_t)) (1 - f(z_t - z_{t-1}))
\end{pmatrix}
\]
A market-like game

and the *price trend*

\[z_t - z_{t-1} = \log(p_t) - \log(p_{t-1}) \]

Non-decreasing function \(f(x) \) such that \(f(-\infty) = 0 \) and \(f(\infty) = 1 \)

Two examples

\[
\begin{align*}
f_1(x) &= \theta(x) \\
f_2(x) &= \frac{1}{1+\exp(-\beta x)}
\end{align*}
\]

Four-component vector \(\gamma \)

\[
\gamma_t = \begin{pmatrix}
 f(zv_t - z_t)f(z_t - z_{t-1}) \\
 f(zv_t - z_t)(1 - f(z_t - z_{t-1})) \\
 (1 - f(zv_t - z_t))f(z_t - z_{t-1}) \\
 (1 - f(zv_t - z_t))(1 - f(z_t - z_{t-1}))
\end{pmatrix}
\]

Strategy of each investor:

four-component vector \(\alpha^{(i)} \) with entries \(-1, 0, \) or \(1\)

Investment of agent \(i \) : \(\alpha^{(i)} \cdot \gamma \)
A market-like game

- **Examples:**
 - Fundamental (value-investing strategy)
 \[\alpha^{(i)} = (1, 1, -1, -1) \]
 - Pure trend-following (technical trading)
 \[\alpha^{(i)} = (1, -1, 1, -1) \]
A market-like game

- Examples:
 - Fundamental (value-investing strategy)
 \[\alpha^{(i)} = (1, 1, -1, -1) \]
 - Pure trend-following (technical trading)
 \[\alpha^{(i)} = (1, -1, 1, -1) \]
- Total number of strategies is \(3^4 = 81 \). Strategies labelled by a number
 \[
 n^{(i)} = \sum_{k=0}^{3} 3^k \left(\alpha_k^{(i)} + 1 \right)
 \]
 (Fundamental strategy = no.72 and pure trend-following = no.60)
A market-like game

- **Examples:**
 - Fundamental (value-investing strategy)
 \[\alpha^{(i)} = (1, 1, -1, -1) \]
 - Pure trend-following (technical trading)
 \[\alpha^{(i)} = (1, -1, 1, -1) \]
- **Total number of strategies is** \(3^4 = 81 \). Strategies labelled by a number
 \[
 n^{(i)} = \sum_{k=0}^{3} 3^k \left(\alpha_k^{(i)} + 1 \right)
 \]
 (Fundamental strategy = no.72 and pure trend-following = no.60)
- **Evolution dynamics:**
 - After \(r \) time steps \(s \) agents copy the strategy of the \(s \) best performers plus
 - Mutation probability
 (In the figures: \(r = 50, s = 10, \lambda_0 = 10000 \), \(45 = (0, 1, -1, -1) \),
 \(18 = (-1, 1, -1, -1) \), \(73 = (1, 1, -1, 0) \), \(75 = (1, 1, 0, -1) \))
A market-like game

Market game simulation with evolution. Initial condition: all traders in the fundamental strategy
A market-like game

Market game simulation with evolution. Initial condition: 50% fundamental and 50% trend-following
A market-like game

Market game simulation with evolution. Initial condition: random strategies
A market-like game

Market game simulation without evolution. 50% of fundamental strategies and 50% trend-following
A market-like game

Lyapunov exponents for the log-price \((z_t)\) dynamics. The Jacobian of

\[
\begin{pmatrix}
 z_t \\
 z_{t-1}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 z_{t+1} \\
 z_t
\end{pmatrix}
\]

is

\[
M_t = \begin{pmatrix}
 1 + \frac{\partial}{\partial z_t} \frac{\sum_i \omega^{(i)}}{\lambda + \lambda_1 |\sum_i \omega^{(i)}|} & \frac{\partial}{\partial z_{t-1}} \frac{\sum_i \omega^{(i)}}{\lambda_0 + \lambda_1 |\sum_i \omega^{(i)}|} \\
 1 & 0
\end{pmatrix}
\]
A market-like game

- Lyapunov exponents for the log-price (z_t) dynamics. The Jacobian of

$$
\begin{pmatrix}
 z_t \\
 z_{t-1}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 z_{t+1} \\
 z_t
\end{pmatrix}
$$

is

$$
M_t =
\begin{pmatrix}
 1 + \frac{\partial}{\partial z_t} \frac{\sum_i \omega^{(i)}}{\lambda_0 + \lambda_1 |\sum_i \omega^{(i)}|} & \frac{\partial}{\partial z_{t-1}} \frac{\sum_i \omega^{(i)}}{\lambda_0 + \lambda_1 |\sum_i \omega^{(i)}|} \\
 1 & 0
\end{pmatrix}
$$

- Lyapunov spectrum obtained from

$$
\lim_{N \to \infty} \left| M_t^T M_{t+N-1} \cdots M_t^T M_t \cdots M_{t+N-1} \right|^{1/2N}
$$
A market-like game

- Lyapunov exponents for the log-price \((z_t)\) dynamics. The Jacobian of

\[
\begin{pmatrix}
Z_t \\
Z_{t-1}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
Z_{t+1} \\
Z_t
\end{pmatrix}
\]

is

\[
M_t = \begin{pmatrix}
1 + \frac{\partial}{\partial z_t} \frac{\sum_i \omega^{(i)}}{\lambda_0 + \lambda_1} \left| \sum_i \omega^{(i)} \right| & \frac{\partial}{\partial z_{t-1}} \frac{\sum_i \omega^{(i)}}{\lambda_0 + \lambda_1} \left| \sum_i \omega^{(i)} \right| \\
1 & 0
\end{pmatrix}
\]

- Lyapunov spectrum obtained from

\[
\lim_{N \to \infty} \left| M_{t+N-1}^T \cdots M_t^T M_t \cdots M_t + N-1 \right|^{1/2N}
\]

- Lyapunov exponents computed for \(f = f_2\) for several values of \(\beta\) and a 50 – 50 admixture of fundamental and trend-following strategies. Typically one Lyapunov number equal to zero and the other smaller than but very close to one.