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The Shannon sampling theorem

Theorem
If a function x(t) contains no frequencies higher than B hertz, it is
completely determined by giving its values at a series of points spaced
1/(2B) seconds apart. (! sampling for in�nite time)

Proof:

f (t) =
1
2π

Z 2πB

�2πB
F (ω) e iωtdω

F (ω) may be writen as a Fourier series

F (ω) =
n=∞

∑
n=�∞

xn
2B
e i

n
2B ω

By substitution and integration in ω

f (t) =
1
2π

Z 2πB

�2πB

n=∞

∑
n=�∞

xn
2B
e i

n
2W ωe iωtdω =

n=∞

∑
n=�∞

xn
sinπ (2Bt � n)

π (2Bt � n)

xn being xn = f
� n
2B

�
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The Shannon sampling theorem: graphical illustration
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Shannon sampling: local reconstruction
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Shannon sampling: alternatives to the sinc
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Shannon sampling: irregular sampling
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Irregular sampling: The Voronoi-Allebach algorithm
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Irregular sampling: The Voronoi-Allebach algorithm

Convergence, but band-limited by the largest gap
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The Papoulis generalization

Sampling of N �ltered copies of the signal at 1/N rate.
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The Papoulis generalization

Let fHp (ω) ; p = 1, � � � ,Ng be the set of �lters. The outputs are
gp (t) = f (t) � hp (t) p = 1, � � � , n

When the signals are sampled at the 1/N the Nyquist rate: TN = N/2B

sp (t) =
∞

∑
n=�∞

gp (nTN ) δ (t � nTN )

Then

f (t) =
N

∑
p=1

∞

∑
n=�∞

gp (nTN ) kp (t � nTN )

kp (t) =
Z B

�B
Kp (ω, t) e i2πωtdω

with the Kp (ω, t) being the solutions of set of equations (0 � m � N)

2B
N

N

∑
p=1

Kp (ω, t)Hp

�
ω� 2mB

N

�
= e�i2πmtN/T
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The Papoulis generalization

Because: The original signal has band B and when �ltered each gp (t)
should still have band larger than B

N . When sampled at TN = NT
intervals its Fourier transform Sp (ω) is periodic of period 2B/N.
Therefore it is an aliased replication of Gp (ω). In the interval�
B � 2B

N ,B
�
there are N portions of replicated spectrum

Sp (ω) =
2B
N

N�1
∑
n=0

Hp

�
ω� 2n

N
B
�
F
�

ω� 2n
N
B
�

in matrix form���������
S1 (ω)
S2 (ω)
...

SN (ω)

���������=
������������

H1 (ω) � � � H1
�

ω� 2(N�1)B
N

�
H2 (ω) � � � H2

�
ω� 2(N�1)B

N

�
...

...
...

HN (ω) � � � HN
�

ω� 2(N�1)B
N

�

������������

����������
F (ω)

F
�
ω� 2B

N

�
...

F
�

ω� 2(N�1)B
N

�
����������

Solution for F if the matrix H is not singular (independence of the �lters)
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Problems with Shannon sampling: Irregular sampling and
subNyquist rates

Regular versus irregular sampling
Sampling at irregular intervals for band-limited functions poses special
problems. Controlled by the largest gap.

However irregular sampling of an appropriate type, instead of being a
nuisance, may be of help for the asymptotically exact reconstruction
of signals.

Question: Can we reconstruct signal at an average sampling rate
slower than Nyquist�s rate? And at irregular intervals?

Answer: Yes, but in a di¤erent functional space.
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Exact asymptotic reconstruction of almost-periodic
functions

Almost-periodic functions
Functions that can be approximated by trigonometric polynomials:
For any ε > 0 , exists a �nite number set (ω1,B1, α1) � � � (ωn,Bn, αn)
such that

g (x) =
n

∑
j=1
Bje i (ωj x+αj ); sup

x2R

jf (x)� g (x)j � ε

Theorem
(Collet) Let xn = nλ+ Xn with Xn being a sequence of i.i.d. random
variables uniformly distributed in [0,λ]. Then, almost every con�guration
{xn} of the point process has the property that if F is any complex almost
periodic function satisfying F (xn) = 0 8n 2 Z, then F � 0.
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Exact asymptotic reconstruction of almost-periodic
functions

Consider F (x) = f (x)� g (x) where g (x) is an almost-periodic
function coinciding with the unknown function at the sampled points.
If f (x) is also almost-periodic it equals g (x). Approximation by
trigonometric polynomials and Collet�s theorem provides a basis for
asymptotically exact reconstruction algorithms at any (random) rate.

RVM () random sampling, superoscillations 15 / 39



Fourier and fractional Fourier transform

Approximation by trigonometric polynomials is adequate for signals
with stable frequency components, not so for signals with complex
time-frequency structure.

Obtain inspiration from the fractional Fourier transform
The Fourier operator F1 and its inverse

(F1f ) (ω) = F (ω) =
1

(2π)1/2

Z ∞

�∞
e�iωt f (t) dt

f (t) =
1

(2π)1/2

Z ∞

�∞
e iωtF (ω) dω

In the (t,ω) plane, F1 is a rotation of the signal by α1 =
π
2 .

The fractional Fourier transform is a rotation in the (t,ω) plane, by a
non-integer multiple of π

2 , αb = b π
2 ,

(Fb f ) (ζ) =
e�

i
2 (sgn(sin αb )

π
2 �αb)

(2π jsin αb j)1/2

Z ∞

�∞
e
�
�i tζ

sin αb
+ i
2 cot αb(t2+ζ2)

�
f (t) dt
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Chirps

The inverse of Fb is F�b .

The Fourier transform decomposes f into harmonics (
�
e�iωt

	
).

The kernel of the fractional Fourier transform is a linear chirp
e�i (ω�ct)t with ω = ζ

sin αb
and c = 1

2 cot αb .

This suggests that a more general basis to expand a signal, with
arbitrary features in the ω� t plane, is a basis of linear chirps.
Choice of a basis is always a critical issue in the reconstruction of
sampled signals.
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Asymptotic reconstruction in chirp space

A uniform approximation result for random sampling in chirp
space
De�ne the space LC of linear chirp functions as the space of
functions f such that 8ε > 0 9 a �nite number of real number sets
(ω1, c1, α1,B1) , ..., (ωk , ck , αk ,Bk ) such that

g (x) =
k

∑
j=1
Bje ifωj+cj (x�αj )gx

and
sup
x2R

jf (x)� g (x)j � ε

(the space of almost periodic functions corresponds to the cj = 0
case).

The space LC of linear chirp functions is strictly larger than the space
of almost periodic functions. (It su¢ ces to consider e ix

2
)
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Asymptotic reconstruction in chirp space

Theorem
(E. Carlen, RVM) Let xn = nλ+ Xn with Xn being a sequence of i.i.d.
random variables uniformly distributed in [0,λ]. Then, almost every
con�guration {xn} of the point process has the property that if f is a
function in the linear chirp space LC satisfying
f (xn) = 0 8n 2 Z, then f � 0.

For the proof one needs the following :

Lemma
For almost every con�guration fxng of the random process, one has

lim
L!∞

1
2L+ 1 ∑

�L�n�L
e i(ωxn+cx 2n ) = 0

for real ω and c with ω 6= 0.
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Asymptotic reconstruction in chirp space

Proof of the theorem:
Let f (xn) = 0, 8n 2 Z and g (x) be its ε�approximation by linear
chirp polynomials. Then����� limL!∞

1
2L+ 1 ∑

�L�n�L
e�ifωxn+cx 2ngg (xn)

�����
=

����� limL!∞

1
2L+ 1 ∑

�L�n�L
e�ifωxn+cx 2ng (g (xn)� f (xn))

����� � ε

for all ω and c . Inserting now g (x) = ∑k
j=1 Bje

ifωj+cj (x�αj )gx in the
left-hand side of the above equation one obtains����� limL!∞

1
2L+ 1 ∑

�L�n�L

k

∑
j=1
Bje

if(ωj�cjαj�ω)xn+(cj�c )x 2ng
����� � ε

Choosing ω = ωj � cjαj , c = cj and using the lemma, one concludes
that for almost every con�guration fxng,
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Asymptotic reconstruction in chirp space

jBj j � ε

for all j in the linear chirp approximation.

Because this result holds for all ε and the linear chirp basis functions
are kernels to the fractional Fourier transform, one concludes that the
function f has zero fractional Fourier spectrum. Therefore it is the
zero function.
As in the case of functions in the almost periodic space, the above
result may be used to estimate functions in the linear chirp space by
random sampling. If from a time series h (xn), one obtains, by the
appropriate algorithm, a linear chirp approximation g (x) coinciding
with the sampled function on a typical sequence fxng, that is

f (xn) = g (xn)� h (xn) = 0

then, in the above de�ned space, one knows that g (x) = h (x) for all
x .
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Asymptotic reconstruction in chirp space

Reconstruction by random sampling may be carried out by the
following algorithm:

1) Compute

F (f , c) =
1
N

N

∑
n=1

s (tn) exp
�
�i
�
2πftn + ct2n

�	
for the random sampled signal s (t).
Find the dominant maximum of jF (f , c)j in the (f , c) plane. Let
(f1, c1) be the location of this maximum and

A1 = F (f1, c1)

2) Subtract A1 exp
�
i
�
2πf1t + ct2

�	
from the signal

s1 (tn) = s (tn)� A1 exp
�
i
�
2πf1t + c1t2

�	
3) Repeat step 1) for s1 (t) looking for another dominant maximum
away from (f1, c1). Let (f2, c2) be the location of this maximum and
A2 = F (f2, c2).
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Asymptotic reconstruction in chirp space

4) Compute

s2 (tn) = s1 (tn)� A2 exp
�
i
�
2πf2t + c2t2

�	

Repeat the process until no new maxima appear. Then repeat the
whole process starting from 1) until a stable estimate of s (t) is
obtained.
This, of course, is the kind of procedure that one naively expects to
lead to an estimate of the signal in chirp space. What our result
improves upon is not on this or similar algorithms but on the
guarantee of the asymptotic convergence of the random sampling
approximation.
The power of random sampling may be illustrated by a simple
example. Let

s (t) =
3

∑
i=1
Ai exp

�
i
�
2πfi t + ci t2

�	
be a 3-chirp signal.
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improves upon is not on this or similar algorithms but on the
guarantee of the asymptotic convergence of the random sampling
approximation.
The power of random sampling may be illustrated by a simple
example. Let

s (t) =
3

∑
i=1
Ai exp

�
i
�
2πfi t + ci t2

�	
be a 3-chirp signal.
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Asymptotic reconstruction in chirp space

When the function jF (f , c)j is computed either by random or regular
sampling above Nyquist�s rate, the identi�cation of the maxima in the
(f , c)�plane is quite similar.

However, for (average) sampling rates below Nyquist�s the di¤erence
is quite remarkable.

The �gure compares the behavior of jF (f , c)j for random and regular
sampling at the same average rate, equal to 1

4 the Nyquist rate. The
accurate identi�cation of the chirp parameters by random sampling is
quite impressive, whereas for regular sampling the result is pure
nonsense. What one sees in the regular sampling case are the
beatings between the signal frequencies and the sampling frequency.
Notice that to make the regular sampling as unbiased as possible the
initial time of the sequence has been randomized.
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Asymptotic reconstruction in chirp space
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Questions

Quasi-periodic, linear chirp space, nonlinear chirps
Collet�s counter-example
Where is the boundary in function space for reconstruction by random
sampling?

Reconstruction with nonuniform probability distributions
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Tomograms and random sampling

Tomographic reconstruction of the superposition of two nonlinear chirps in
the interval [0,T ]

Y (t) = y1 (t) + y2 (t) = A1e iΦ1(t) + A2e iΦ2(t)

Φ1 (t) = a1t2 + c1t
3
2 + b1t

Φ2 (t) = a2t2 + c2t3 + b2t

Phase derivative of the chirps
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Tomograms and random sampling

Two reconstructions are analysed:
1) Regular sampling
T=200s, 20000 points f = 314rd/s fSh = 150
T=200s, 2000 points f = 31.4rd/s
2) Random sampling
T=200s, 20000 points f = 314rd/s fSh = 150
T=200s, 2000 points f = 31.4rd/s

Tomograms cut at θ = 0.442π for sampling with 20000 points
(regular or random) and random sampling at 200 points
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Tomograms and random sampling

Phase derivative reconstruction after separation with random
sampling
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Superoscillations

Question: Can we send Beethoven �fth symphony using a 5KHz band
and receiving in real time a 25KHz signal?

Let B = 25KHz and T ' the duration of Beethoven�s �fth. Using
Nyquist-Shannon�s theorem, the symphony is converted into a
sequence of 2BT real numbers.
Theorem (Kempf): Each Hilbert space of bandlimited signals
contains signals such that the Fourier transform of F (ω), i.e. the
signal f (t), passes through any �nite number of arbitrarily
prespeci�ed values.
Proof (sketch): In the Hilbert space of B�band limited functions,
consider the operator T

Tφ (t) = tφ (t)

and its self-adjoint extensions T (α). Each self-adjoint extension has
linearly independent eigenvectors ftn (α)g such that

φ (tn) = (tn (α) , φ)
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Superoscillations

Given a function that at a set ftig of points must have prespeci�ed
values φi , that is

(ti , φ) = φi

its coe¢ cients (tn (α) , φ) in the ftn (α)g basis are obtained by
n=∞

∑
n=�∞

(ti (α) , tn (α)) (t�n (α) , φ) = φi

Linear independence of the ftn (α)g basis yields the existence of a
solution.
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Superoscillations: An example

Let the bandwidth be 1/2 Hz. Then any signal has the cardinal series
form

f (t) =
N

∑
n=1

an
sin ((t � n)π)

(t � n)π

Now I want to encode in this signal, information about a signal with a
higher band, that is, information concerning values at points less
spaced in time. Let τ < 1

f (t) =
N

∑
r=1

xr
sin ((t � τr)π)

(t � τr)π

The signal should satisfy f (nτ) = an, the prescribed values. Then

an =
N

∑
r=1

xr
sin ((n� r) τπ)

(n� r) τπ

All one has to do is to solve this system of equations to obtain the xr�s
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Superoscillations: An example

xr =
N

∑
n=1

S�1rn an

S�1rn being the inverse of the matrix Snr =
sin((n�r )τπ)
(n�r )τπ
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Superoscillations

Superoscillations are possible because they are a local phenomenon.
The global behavior of a signal is not a¤ected by the occurrence of
superoscillations which occur over �nite intervals. A bandlimited
signal can oscillate at a rate higher than the Nyquist rate only on
�nite intervals, but not on in�nite intervals.

Instead of a reduced bandwidth, another possibility is to use
superoscillating signals of the same bandwidth. The use of
superoscillating signals will allow to compress messages into an
arbitrarily short time interval.

The price to be paid is that, for �xed message size, the energy
expense grows polynomially with the compression and that, for �xed
compression, the energy expense grows exponentially with the
message size.
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Applications of superoscillations

Superresolution imaging (ex. radar): A superoscillatory waveform
contains, across a �nite time interval, faster variations than its
highest constituent frequency component. Radar imaging using a
superoscillatory pulse allows one to detect an object with a range
resolution improved beyond the fundamental bandwidth limitation. In
particular it reduces distance uncertainty.

Construction of the superoscillation

~
V (ω) =

N�1
∑
n=0

anδ (ω�ω0 � n∆ω)

V (t) =
1
2π

Z ∞

�∞

~
V (ω) e iωtdω =

e iω0t

2π

N�1
∑
n=0

anzn, z = e i∆ωt

V
�
z = e i∆ωt

�
=
aN�1e iω0t

2π

N�1
∏
n=1

(z � zn)
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Applications of superoscillations
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Questions

What happens when random sampling and superoscillations are used
together?

Will random sampling reconstruct an arbitrary superoscillation?
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