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The maximum entropy method (MEM)

The MEM states that the probability distribution which best
represents the current state of knowledge is the one that incorporates
all the known information and has the maximum uncertainty about
what is not known. That is, the one that is the least biased about
unknown factors (Jaynes).

The �rst consequence is that application of the MEM needs a reliable
measure of uncertainty.

In current practice uncertainty is identi�ed with (Shannon) entropy

S = �∑
i
pi log pi

Is entropy a consistent measure of uncertainty?
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Quantifying uncertainty: The Khinchin axioms

Let X be a discrete random variable, taking k distinct values (1, 2, ...k)
(K1). S [X ] depends only on the probability distribution of X . (That is,
we can change the labels of the events as much as we like without
changing S .)
(K2). S [X ] is maximal, for a given k, when pi = 1/k for all i . (That is,
the uniform distribution has maximal S .)
(K3). If Y is random variable on 1, 2, ...m, where m > k, but
Pr(Y = i) = pi if i � k, and Pr(Y = i) = 0 if k < i � m, then
S [Y ] = S [X ]. (That is, adding possibilities of probability zero does not
change S .)
(K4). For any random variables X and Y ,
S [X ,Y ] = S [X ] +∑x Pr (X = x) S [Y jX = x ]
(That is, our joint S is the sum of the S for one variable, plus the average
value of the S of the other variable given the �rst.)
(K4�). S [X ,Y ] = S [X ] + S [Y ] if X and Y are independent. Weaker
than (4).
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Measures of uncertainty

(K1)+(K2)+(K3)+(K4) =) S = �∑i pi log pi (Shannon entropy)

(K1)+(K2)+(K3)+(K4�) =) Sα =
1
1�α log∑i p

α
i (Rényi entropies)

α � 0
limα!1 Sα = S

(K4�) is quite intuitive. However (K4) is not so reasonably looking. It
says that uncertainty is additive in a particular strict way, that the
means of conditional uncertainties add up to total uncertainty. In
other words given a composite system the uncertainty is the same no
matter how we choose to decompose it and compute the
uncertainties.
Equivalently: information (or lack thereof) is independent of the way
we choose to collect it, that is, directly for the compound system or
sucessively for the subsystems. Therefore for strongly correlated
events (correlated subsystems) S might not be the most appropriate
uncertainty measure.

() April 2016 5 / 26



Shannon entropy

Consider a set of N events all with the same probability and partition
the set into R compound events containing r elementary events each.
N = Rr
The probabilities are pi = 1

N , Pk =
1
R and p (j jk) =

1
r . Then (K1)

and (K4) =)

S (fpig) = S (Rr) = S (R) +
R

∑
k=1

1
R
S (r) = S (R) + S (r)

=) S (R) = c logR = �c log 1
R

(K3)+(K2) =) S
�� 1

R ,
1
R , � � � ,

1
R

	�
= S

�� 1
R ,

1
R , � � � ,

1
R , 0

	�
�

S
�� 1

R+1 ,
1

R+1 , � � � ,
1

R+1

	�
=) c > 0

(K4) =) S (fpig) = �∑
i
pi log pi
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Rényi entropy

The Shannon entropy is obtained by a linear average of the
uncertainty of the elementary event � log pi
A more general way to average a set of quantities fxig is

g�1
 

∑
i
pig (xi )

!
g is called the Kolgomorov-Nagumo function.

There are two choices that preserve additivity for independent events
(K4�),

g (x) = cx and g (x) = c2(1�α)x

The second choice leads to the Rényi entropies, with limit

lim
α!1

Sα = lim
ε!0

1
ε
log

 
∑
i
p1�ε
i

!
= lim

ε!0
1
ε
log

 
∑
i
pi (1� ε log pi )

!
= S
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Other uncertainty measures

In general
S (p) = ∑

i
φ (p (xi ))

with φ a concave function. Is again a maximum when all the
probabilities are equal (satis�es the principle of insu¢ cient reason -
Laplace)
Examples

S = ∑
i
log (pi )

S = �∑
i

1
log (pi )

S = �∑
i

1

(log (pi ))
2

S = ∑
i

q
log (pi )
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A �ctitious example: The prisoner in the land of the dice
throwers

A mathematician is in prison in the land of the dice throwers where
the jailers spend their time throwing dice, betting and recording the
results. To the mathematician, who is in the death row, is proposed
the following (sadistic) problem:
For a particular dice, after 100000 throws, the average was 3, 588886
and the number 2 appeared 16700 times. Problem: Order the dice
outcomes in decreasing order according to the number of their
appearances. If the mathematician supplies the right answer he will
be free, if not the sentence will be executed immediately.
Having nothing to loose because he was on the death row anyway, the
mathematician decided to accept the challenge. After some thought
and a few calculations in the toilette paper available at the cell, the
mathematician supplied the answer.

6, 5, 4, 2, 3, 1
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The prisoner in the land of the dice throwers

To the jailers surprise it was correct and the mathematician was
released. How did he manage?
Answer: By taking into account all the available information and
maximizing the uncertainty about what was not known
Had the dice been a perfect fair dice the number 2 would have
appeared 16666 times, not 16700 and the average would have been
3, 5. An estimate of the p2 probability is
(a)p2 = (16700)/(100000) = 0, 167; and the other constraints are
(b) p1 + p3 + p4 + p5 + p6 = 1� 0, 167 = 0, 833
(c) p1 + 3p3 + 4p4 + 5p5 + 6p6 = 3, 588886� 0, 334 = 3, 254886
Maximizing S = �∑k pk log pk + λ1 (∑k pk � 1) +
λ2 (∑k kpk � 3.588886) + λ3 (p2 � 0.167) ;

�
∂S
∂pk
= 0

�
)

pk = expfλ1 � 1+ λ2k + λ3g with λ1,λ2 and λ3 obtained from (a),
(b) and (c), x = expfλ2g = 1, 03746159; p1 =
0.833/

�
1+ x2 + x3 + x4 + x5

�
= 0, 15; pk = p1 � xk�1 for k 6= 2

(p3 = 0, 161449; p4 = 0, 167497; p5 = 0, 1737719; p6 = 0, 18028)
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The continuous case

When the set of possible states fx 2 Xg forms a continuum, say R,
the entropy expression has no natural extension to this case. The
expression one would naively write down

�
Z
p (x) log p (x) dx

for a probability density p (x) has properties which are rather di¤erent
from those of its discrete counterpart. In particular, probability
densities carry a physical dimension, say probability per unit length,
which gives S the dimension of log cm which seems somewhat odd.
Also this expression is not invariant under a reparametrization of X ,
for example by a change of units. In addition, S may now become
negative and is not bounded from above nor below.

A fruitful way of dealing with the continuum is by replacing the
entropy expression by the so called relative entropy.
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The continuous case

For the discrete case the relative entropy is de�ned as

S (p, µ) = �∑
i
p (xi ) log

p (xi )
µ (xi )

where the µ (xi )�s are positive weights determined by some
background measure. In the special case where µ is the counting
measure i.e. if µ (xi ) = 1 8i , the relative entropy becomes equal to
the absolute entropy. This relative entropy has a natural extension to
the continuous case,

S (P,M) = �
Z

∂P
∂M

log
∂P
∂M

dM

or, with densities dP = p (x) dx ; dM = µ (x) dx

S (p, µ) = �
Z
p (x) log

p (x)
µ (x)

dx

where µ (x) is the density of the reference measure.
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The continuous case

The important di¤erence is that if one now partitions the real line in
increasingly �ner subsets, the probabilities p (x) and the background
weights µ (x) are both split simultaneously and the logarithm of their
ratio will generally not diverge. The relative entropy is non increasing
under re�nement.
One replaces the concept of absolute entropy by that of relative
entropy. The MEM is now generalized to the maximum relative
entropy method (MREM).
The new rule however is di¤erent from the earlier one because it is
relative to a choice of the background measure. Di¤erent choices of µ
will lead to di¤erent probability assignments.
An interpretation of the background measure µ is that it represents a
prior distribution that corresponds to our knowledge of the system
before the information encapsulated in the constraints. In this
interpretation the MREM becomes a rule for changing or updating a
previous probability distribution.
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Pairwise MEM

For L random variables �!x = (x1, x2, � � � , xL) for which we know M
samples, estimate the probability P (�!x ). Maximize

L = �
Z
P (�!x ) lnP (�!x ) d�!x + α

�Z
P (�!x ) d�!x � 1

�
+

L

∑
i=1

βi

�
1
M ∑ xi � x i

�
+

L

∑
i ,j=1

γij

 
1
M

M

∑
m=1

xixj � xix j

!

δL
δP (�!x ) = 0 =) � lnP (�!x )� 1+ α+

L

∑
i=1

βixi +
L

∑
i ,j=1

γijxixj = 0

P (�!x ) = exp
 
�1+ α+

L

∑
i=1

βixi +
L

∑
i ,j=1

γijxixj

!
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The moment problem and reconstruction of processes

In the classical moment problem a positive density P(x) is sought
from knowledge of its power momentsZ b

a
xnP(x)dx = µn

Underdetermined inverse. MEM provides a solution; ∂S
∂P (x ) = 0

S = �
Z
P(x)lnP(x)dx +

N

∑
n=0

λn

�Z
xnP(x)dx � µn

�
Reconstruction of processes: Burgh�s theorem
The maximum entropy stochastic process fXig satisfying the
constraints E [XiXi+k ] = αk , k = 0, 1, ..., p for all i is the p-order
Gauss�Markov process of the form

Xi = �
p

∑
k=1

ckXi�k + Zi

where the Zi are i.i.d. v N(0, σ2)
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Applications of MEM

There are many applications of MEM, whenever inference under
imcomplete information is needed: Image restoration, anomaly
detection, sociology, biology,etc.
MEM is used to compensate for the ignorance about the details. The
hope is to eventually obtain robust universal behaviors.

Before MEM, pairwise interactions from data are obtained by
correlation or partial correlation
Pearson correlation

Cij =
1
M

M

∑
m=1

�
x (m)i � x i

� �
x (m)j � x j

�
rij =

Cijp
CiiCjj

does not distinguish between direct dependence and indirect
association
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Correlation versus partial correlation

Partial correlation would be a better measure: Example

xi !
yi = (xi � x i ) /

p
Cii =) rij =

yiy j

rAB jC =
rAB � rBC rACq
1� r2AC

q
1� r2BC
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MEM and biological networks

Protein 3D structure computed from evolutionary sequence
variation
The idea behind the search for correlated mutations is that residues in
contact would impose constraints on each other, which would lead to
a correlation between the substitution patterns in a multiple sequence
alignment. Correlated mutations of residues in contact to maintain
the function and, by implication, the shape of the protein.

(A$D) Valine$Isoleucine (B$C) Leucine$Isoleucine
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MEM and biological networks
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MEM and biological networks

P (x (σ))

=
1
Z
exp

 
L

∑
i=1

∑
σ2Ω

βi (σ) xi (σ)

+
L

∑
i ,j=1

∑
σ,ω

γij (σ,ω) xi (σ)xj (ω)

!

MIij = ∑
σω

ρij (σω) ln
ρij (σω)

ρi (σ) ρj (ω)

DIij = ∑
σω

Pij (σω) ln
Pij (σω)

ρi (σ) ρj (ω)
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MEM and the reconstruction of neuron networks
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MEM and tra¢ c anomalies

Divide packets into multidimensional packet classes according to the
packets�protocol information and destination port numbers. For
example TCP and UDP packects then subdivided according to the
destination ports. These packet classes serve as the domain of the
probability space.
The baseline distribution of the packet classes is determined by
learning a density model from the training data using Maximum
Entropy estimation. The training data is a pre-labeled data set with
the anomalies labeled by a human and in which packets labeled as
anomalous are removed.
In the detecting phase, an observed network tra¢ c trace is given as
the input. The relative entropy of the packet classes in the observed
tra¢ c with respect to the baseline distribution is computed. The
packet classes that contribute signi�cantly to the relative entropy are
then recorded. If certain packet classes continue to contribute
signi�cantly to the relative entropy, anomaly warnings are generated
and the corresponding packet classes are reported.
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Some problems on maximal entropy

1) For the problem of the prisoner in the land of the dice throwers,
construct an example where the MEM estimate leads to the wrong
result
2) Consider two independent integer-valued random variables, X and
Y . Variable X takes on only the values of the eight integers
f1, 2, ..., 8g with uniform probability. Variable Y may take the value
of any positive integer k, with probabilities PfY = kg = 2�k ,
k = 1, 2, 3, ... .
Which random variable has greater uncertainty?
3) What is the maximal entropy distribution of the joint variables x ,y
with the following marginals. Hint: Use S (x , y) � S (x) + S (y)

x

y

p11 p12 p13 1
2

p21 p22 p23 1
4

p31 p32 p33 1
4

2
3

1
6

1
6
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Some problems on maximal entropy

4) Find the maximal entropy process fXig+∞
�∞ subject to

(a) E
�
X 2i
�
= 1

(b) E
�
X 2i
�
= 1 and E [XiXi+1] = 1

2
Hint: Use or prove Burgh�s theorem
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