
Extended objects as ultradistribution
configuration spaces

Rui Vilela Mendes∗

CMAFcIO, Faculdade de Ciências,
Universidade de Lisboa

Abstract

Configuration spaces of point particles with and without internal quan-
tum numbers (marks) have been considered in the past, as a framework
to describe the dynamics of multiagent systems. Here, a proposal is made
to extend this framework to configuration spaces of extended objects of
arbitrary shape. This is achieved by identifying shape with the support
of an ultradistribution of compact support. Then, using the multipole
expansion property of these ultradistributions, one finds that the config-
uration spaces of extended objects are a simple extension of the marked
configurations spaces.

Dedicated to the memory of Yuri Kondratiev who
always was a source of enlightenment and inspiration

1 Introduction

Configuration spaces are a nice framework to describe complex multi-agent sys-
tems in statistical mechanics, biology, economy, ecology, etc. A mathematical
theory of configuration spaces of non-overlapping point particles, idealized as
delta function point measures, has been developed in [1] [2]. Analysis and geom-
etry of these configuration spaces as well as an harmonic analysis theory [3] have
also been extensively developed. For particles with internal quantum numbers
marked configuration spaces have been developed [4] [5]. Application of the
theory to several stochastic dynamical systems has been worked out [6] - [9].
In some systems of statistical physics an idealization of the molecules as point

particles may be a reasonable approximation. However, in many other systems,
the extended nature of the elements of the complex system has to be taken into
account. Goldin [10] [11] has suggested the use of configuration spaces involving
derivatives of deltas to describe multipoles, quadropoles, etc. And also that the
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study of systems of loops and ribbons would be of interest. On the other hand
Ismagilov [12] considered configuration spaces of compact sets. However, except
for Ismagilov’s compact set theory, no detailed theory of configuration spaces
of extended systems has been developed. The purpose of the present work is
to develop a framework that may deal in a unified manner with configuration
spaces of both point-like and extended entities. The framework is so constructed
to profit from the point-like analysis in the already developed theory, whereas
to also take into account the extended nature of the elements in the system.
The basic mathematical entities to be used are ultradistributions of compact
support, which may always be coded as a series of multipoles based on a single
point.
In Section 2 some results on the theory of tempered ultradistributions and

ultradistributions of compact support are reviewed, which are important for the
formulation of extended objects as well defined mathematical entities. In Section
4, some examples are worked out and as general result is obtained. Finally in
Section 5, the analysis and geometry of these ultradistribution configuration
spaces is developed as well as a sketch of its harmonic analysis. This section
makes extensive use of the theory of marked configuration spaces, developed by
other authors [4] [5]. In the Appendix a graphical illustration (adapted from
[13], [14]) is included, as a mnemonic for the several spaces of test functions and
distributions that are useful in the applications.

2 Silva’s tempered ultradistributions. Compact
support

The space of ultradistributions Z ′ is the topological dual of Z, a space of test
functions for which the Fourier transform is in D, the space of infinitely differ-
entiable functions of compact support. The fact that the Fourier transform of Z
has compact support, endows ultradistributions with a rich analytical structure,
which makes these generalized functions more convenient than distributions in
many applications. An important dense subspace of Z ′ is Silva space of tem-
pered ultradistributions U ′ which may be characterized as Fourier transforms of
distributions of exponential type K′ (R) ⊂ S ′ (R), that is, distributions which
locally are µ (x) = Dk

(
ea|x|f

)
, f bounded and continuous [15] [16] [13].

U ′ (C) is the topological dual of U (C), the space of entire functions rapidly
decreasing on horizontal strips of the complex plane. Topologized by the family
of norms

‖φ‖U,k = sup
|Im z|<k

(1 + |z|)k |φ (z)| ,

U (C) is a Fréchet space. The Fourier transform F is an isomorphism of the
space U (C) onto K (R), the space of smooth functions with exponential decay,
topologized by

‖φ‖K,k = max
m�k

sup
x∈R

ek|x|
∣∣∣φ(m) (x)

∣∣∣ .
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Defining, by duality, the Fourier transform on K′ (R)

(F (f) , φ) = (f,F (φ))

f ∈ K′ (R) , φ ∈ K (R), it follows that

F : K′ (R)→ U ′ (C)

is also an isomorphism.
Using the Cauchy formula, it follows that ultradistributions on U ′ (C) ⊃

S ′ (R) have an analytic representation by (a pair of) functions that are ana-
lytic outside an horizontal strip around the real axis. Let Λb denote the open
horizontal strip of size b on each side of the real axis, M

(
C\Λb

)
the space of

functions that are analytic on C\Λb and polynomially bounded on C\Λb and P
the space of polynomials. Then one has the isomorphism

U ′ (C) 'M (C\R) /P

implemented by the mapping

(µ (F ) , φ) = −
∮
Γb

F (z)φ (z) dz

µ (F ) ∈ U ′ (C) , F ∈M
(
C\Λb

)
and φ ∈ U (C), the integral being taken counter-

clockwise around the boundaries of the Λb strip. Distributions in S ′ corresponds
to the case where the strip collapses to the real axis and more general tempered
ultradistributions to the case b > 0.
Analytic functions inM

(
C\Λb

)
represent the same ultradistribution if they

differ by a polynomial. This equivalence relation ÷ turns out to be very useful
to obtain a unique characterization of ultradistributions of compact support.
Given a function F (z) inM

(
C\Λb

)
, one denotes the equivalent class as [F ] ∈

M (C\R) /P.
Operations on tempered ultradistributions are performed using their analyt-

ical images F (z). For example µ (F ) is integrable in R if there is an y0 ∈ R and
a F (z) in M

(
C\Λb

)′
such that F (x+ iy0) − F (x− iy0) is integrable in R in

the sense of distributions. Then

〈µ (F ) |φ〉 = −
∮

Γy0

F (z)φ (z) dz (1)

µ (F ) ∈ U ′, φ ∈ U and the integral runs around the boundaries of the strip
Im (z) ≤ y0.
When b = 0, the functions F (z) represent tempered distributions f (x) in

S ′, F (z) and f (x) being related by the generalized Stieltjes transform

F (z) =
p (z)

2πi

∫
R

f (x)

p (x) (t− z)dx+ P (z)
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p (z) being a polynomial without real zeros and P (z) an arbitrary polynomial.
The inverse Stieltjes transform in S ′ is

f (x) = F
(
x+ i0+

)
− F

(
x− i0−

)
An ultradistribution µ (F ) ∈ U ′ (C) is said to vanish on an open set Ω ∈

R if F ∈ M
(
C\Λb

)
has a polynomially bounded analytic continuation to

{z ∈ R : Re z ∈ Ω}. The support of µ (F ) is the complement in R of the largest
open set where µ (F ) vanishes. As a result, an ultradistributions of compact
support has a unique representation by a function analytic outside some ball
and that vanishes at infinity. Then, using the Laurent series and the analytic
representation of the delta derivatives, it follows that ultradistributions of com-
pact support, denoted µ (F ) ∈ U ′0 (C), are represented by series of multipoles
[16]

µ (F ) =

∞∑
i=0

anδ
(n) (x− x0) .

All these notions are generalized to Rn [16] [17] by considering products
of semiplans and the corresponding polynomial bounds. For the equivalence
relation ÷ one uses pseudopolynomials, that is, functions of the form∑

j,k

ρ
(
z1, · · · ,

∧
zj , · · · , zn

)
zkj ,

∧
zj meaning that this variable is absent from the arguments of ρ.

An ultradistribution in Rn has compact support if there is a disk D such that
any F representing µ (F ) ∈ U ′ has an analytic extension to (C/D)

n. Then the
integral is around a closed contour containing the support of the ultradistribu-
tion. And for ultradistributions of compact support there is also a representation
as a series of multipoles,

ν (x) =

∞∑
r1=0

· · ·
∞∑

rn=0

pr1,··· ,rnδ
(r1,··· ,rn) (x− a) .

with the pr1,··· ,rn being constants and the δ
(r1,··· ,rn)’s derivatives of the delta

distribution.
A few analytic representations (as ultradistributions) that will be useful for

the examples:

δ (x− x0) → − 1

2πi

1

z − x0

δ(n) (x− x0) → (−1)
n+1 n!

2πi

1

(z − x0)
n+1

For the Heaviside function H, DH (x− x0) = δ (x− x0), hence

H (x− x0)→ − 1

2πi
log (x0 − z)
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Figure 1: Extended objects: Square, loop, strip, ball and shell to be represented
as ultradistributions of compact support

3 Extended objects as ultradistributions

To obtain an intuitive feeling for what an element of U ′0 is and how they may
code extended objects, several examples, as depicted in Fig.1, will be studied.
In particular how they may be represented as multipole series.
Consider, in R, a function f1 that is equal to K in the interval [a, b], b > a,

and zero outside the interval,

f1 (x) = K {H (x− a)−H (x− b)} , (2)

H being the Heaviside function. As an ultradistribution, f1 is the equivalence
class (up to polynomials) of the analytic function

F1 (z) =
K

2πi
log

b− z
a− z . (3)

Because f1 (x) has compact support, it has a unique representation by an an-
alytic function vanishing at infinity. For any ultradistribution of compact sup-
port, such a representation is obtained by writing the Laurent series of any
function in the equivalence class [F1 (z)] and discarding the positive powers.

F1 (z) =
∑
n=1

c−n
(z − α)

n

α being the expansion point. The cn coeffi cients may be obtained recursively
from the behavior of the function at infinity

c−n = lim
z→∞

zn

(
F1 (z)−

n−1∑
k=0

c−k

(z − α)
k

)
,
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α being the expansion point. With α = a+b
2 one obtains for the function in (3)

F1 (z) = −2K

2πi

∑
k=0

(
b− a

2

)2k+1
1(

z − a+b
2

)2k+1
. (4)

The Laurent series is convergent in an annulus around the expansion point
between r and R with

r = lim
n→∞

sup bc−n|
1
n

1

R
= lim

n→∞
sup bcn|

1
n

leading to r = b−a
2 . This means that, by choosing a+b

2 as the expansion point,
the series in (4) is convergent everywhere outside the support of f1.

Taking into account the fact that, as an ultradistribution,

δ(n) (x− x0) = (−1)
n+1 n!

2πi

1

(z − x0)
n+1 (5)

one finally obtains the following multipole expansion for the function f1

f1 (x) = K (b− a)
∑
k=0

(
b− a

2

)2k
1

(2k + 1) (2k)!
δ(2k)

(
x− a+ b

2

)
.

In conclusion: an object of intensity K and extension [a, b] is represented by
a point in R× RN, the first entry being a point x0 in the support and the
others the coeffi cients of δ(n) (x− x0) (n = 0, 1, 2, 3, · · · ) in the multipole ex-
pansion. The same applies to any compact support object in R. The only
restriction in the coeffi cients in RN is that, in the corresponding Laurent series,
limn→∞ sup bc−n|

1
n <∞.

For a solid cube in Rn the result generalizes to

fN (−→x ) = K

n∏
i=1

(bi − ai)
∑
ki=0

(
bi − ai

2

)2ki δ(2ki)
(
xi − ai+bi

2

)
(2ki + 1) (2ki)!

the defining coeffi cients of the cube being now in
(
R× RN

)n
.

For a rectangular loop in R2 (Fig.1B) with coordinates (a1b1, a2b2)

g2 (x1, x2) = (δ (x1 − a1) + δ (x1 − b1)) (H (x2 − a2)−H (x2 − b2))+

 x1 ←→ x2

a1 ←→ a2

b1 ←→ b2

 .

(6)
The multipole expansion is obtained by the replacements

δ (x1 − a1) + δ (x1 − b1) = − 1

2πi

(
1

z1 − a1
+

1

z1 − b1

)
H (x2 − a2)−H (x2 − b2) =

1

2πi
log

b2 − z2

a2 − z2
(7)
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multiplying these analytic functions and expanding in Laurent series around
some point, for example

(
a1+b1

2 , a2+b2
2

)
. Then from the coeffi cients of the non-

polynomial part of the Laurent series, one obtains the coeffi cients of the multi-
pole expansion.
For a rectangular strip (Fig.1C) the function to be considered is

h2 (x1, x2) = (H (x1 − a1)−H (x1 − b1)) (H (x2 − a2)−H (x2 − b2))

− (H (x1 − c1)−H (x1 − d1)) (H (x2 − c2)−H (x2 − d2))

and with the replacements as in (7), the procedure is similar.
In conclusion one sees that extended shapes in Rn of compact support may

always be represented by a point in Rn and a sequence of coeffi cients in
(
RN
)n

(or simply in RN by reordering).
The coeffi cients of the multipole series depend on the choice of the expansion

point in the Laurent series, which should be chosen inside the support for a wider
convergence radius of the series as well as to simplify the multipole series. For
example consider the following Laurent series in the neighborhood of infinity∑

n=1

an

zn

which would imply a multipole series with an infinite number of terms and
expansion point at z = 0. However the series is equivalent to a

z−a , that is, a
delta at x = a.

For the configuration spaces the expansion point will always be taken at
the origin and the extended object will be characterized by a point in the base
space and the coeffi cients of the multipole series. For a compact extended ob-
ject of arbitrary shape one considers the Laurent expansion near infinity of the
associated analytical function, vanishing at infinity

f (x1, x2, · · · , xp) =
∑
m,n

i,j∈(1,··· ,n)

c (i, j,m, n)
1

zni z
m
j

,

and then use (5) to obtain the element in RNpthat labels the corresponding
multipole expansion. By relabeling, any compact extended object will be char-
acterized by a point in the base space and a point in RN.

For objects of uniform symmetry the labelling may be simplified. For exam-
ple for objects with spherical symmetry in Rp, for example

Bp = H (R− ρ)

a radius R ball or
Sp = δ (R− ρ)

a radius R shell, one may consider the analytical extension in ρ, and then
Bp → − 1

2πi log z
z−R = − 1

2πi

∑
n=1

1
n

(
R
z

)n
, which with (5) leads to a RN label(

R,−R
2

2
,
R3

3!
,−R

4

4!
, · · ·

)
=

{
(−1)

n−1

n!
Rn;n = 1, 2, · · ·

}
.
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For Sp → − 1
2πi

1
z−R = − 1

2πi

∑
n=1

Rn−1

zn(
1,−R, R

2

2
,−R

3

3!
,
R4

4!
, · · ·

)
=

{
(−1)

n−1

(n− 1)!
Rn−1;n = 1, 2, · · ·

}
,

different points in RN corresponding to spherical objects with different radial
density distributions.
In general, for objects of arbitrary shape a description is obtained in a config-

uration space X×RN, X being the base space. Choosing the expansion point at
a central position of the object, each entry in RN corresponds to a different mul-
tipole structure of the object shape. The first entry roughly corresponds to the
the mass of the object, the second and the third to the dipolar and quadrupolar
structures, etc. Intuitively this is what one expects when describing the shape
of an object. What the space of compact support ultradistributions (U ′0) pro-
vides is a rigorous formulation of the intuitive notion. In practice, a reasonable
description might be obtained by the truncation to a few multipoles, obtain-
ing a X × Rp configuration space, p being the number of retained multipoles.
Summarizing,

Proposition 1 Any extended object in Rn which may be identified with the
support of an ultradistribution in U ′0 (Rn), may be coded as a point in Rn and a
(finite or infinite) sequence of real numbers.

Similar results apply if instead of Rn one has a Riemannian manifold.

4 Ultradistribution configuration spaces

Compact extended objects being characterized by a point in a base space X and
a point in RN, ultradistribution configuration spaces (uconfig spaces, for short)
may be constructed in a way similar to the marked configuration spaces of Refs.
[4] [5], with X a Riemannian manifold and the space of the marks M = RN.

Definition 2 A uconfig space is

ΩR
N

X = {ω = (γ, s) |γ ∈ ΓX , s ∈M}

X being a compact C∞ Riemannian manifold,

ΓX = {γ ⊂ X|# (γ ∩K) <∞ for each compact K ⊂ X}

and M the set of all maps γ 3 x→ sx ∈ RN.

With the topology defined by the countable collection of seminorms (p1, p2, · · · )
, where pn = |xn|, for x = (x1, x2, · · · ) ∈ RN, RN is a locally convex space metriz-
able by the translational invariant metric d (x, y) =

∑∞
n=1 2−n |xn−yn|

1+|xn−yn| . It is a
Fréchet space but not a Banach space.
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For each open subset of X with compact closure Λ ∈ Oc (X) define

ΩR
N

Λ =
{
ω ∈ ΩR

N

X |Pr
X

(ω) ⊂ Λ
}

with the restriction map
pΛ : ΩR

N

X → ΩR
N

Λ

Also
ΩR

N

Λ (n) =
{
ω ∈ ΩR

N

Λ |#ω = n
}

For practical applications with objects of finite size some restrictions may be put
on n for each Λ. For the moment no such limitations will be considered here.
Notice that factoring by the permutation group does not apply here because
one is allowing for different nature of the objects at each point x ∈ X.
A metric and a metric topology in ΩR

N

X is obtained from the metrics on X
and RN, the topology in ΩR

N

X being defined as the weakest topology making all

the pΛ mappings continuous. The associated σ−algebra is denoted B
(

ΩR
N

X

)
.

In the Riemannian space X one has the usual measure m (the Riemannian
volume) and for RN consider a probability measure µn in each R entry, the
measure in RN being the product measure.

µ (dy) = Πnµn (dyn)

y = (y1, y2, · · · ) ∈ RN. Notice that we may chose different probability measures
for each n in case we want to emphasize special multipole features of the objects.
Consider in X a intensity measure σ absolutely continuous with respect to the
volume measure. Then a measure σ (A) is defined in B

(
X × RN

)
by

σ (A) =

∫
A

µ (dy)σ (dx)

A ∈ B
(
X × RN

)
. For ΩR

N

X one starts by considering the product measure σ⊗n in(
X × RN

)n
which, for each Λ ∈ Oc (X) is a finite measure σ⊗nΛ . Then a family

of measures is defined on ΩR
N

Λ by

λΛ
σ =

∞∑
n=0

γ (n)σ⊗nΛ

with γ (n) chosen such that N (Λ) =
∑∞
n=0 γ (n)σ (Λ)

n is finite, σ (Λ) being the
measure of

(
Λ× RN

)
. A probability measure in ΩR

N

Λ is

πΛ
σ =

1

N (Λ)
λΛ
σ

These Λ−families of measures
{
πΛ
σ |Λ ∈ Oc (X)

}
, being consistent, define prob-

ability measures πσ on ΩR
N

X . For γ (n) = 1
n! , N (Λ) = eσ(Λ), πσ is a Poisson
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measure, for γ (n) = 1
Γ(αn+1) , N (Λ) = Eα (σ (Λ)) (α > 0, α 6= 1) it would be a

fractional Poisson measure [18], etc.
For the transformation properties of the πσ measures in ΩR

N

X one considers
a transformation group G that is the semidirect product of the group Diff0 (X),
diffeomorphisms of X with compact support, with the smooth currents

X 3 x→ θ (x) ∈ RN

θ being equal to one for all but a finite number of entries in RN and also equal
to one outside a compact set (dependent on θ and on each particular entry).
The group acts on X × RN as follows.

X × RN 3 (x, s)→ (ψ (x) , θ (ψ (x)) s) ∈ X × RN

ψ ∈Diff0 (X).
This construction is of course a simple extension to X × RN of the results

obtained in [5] for X × R+. Likewise the results on integration by parts, di-
vergence, representations of the group G, Dirichlet forms, etc. in [5] may be
similarly extended to X × RN.
The important point to retain is that, with the ultradistribution interpre-

tation, extension to X × RN or to truncations X × Rp allows one to deal with
configuration spaces of extended objects of arbitrary shape. For dynamical ap-
plications where extended objects might represent interacting physical systems,
a few interesting questions have to be addressed. For example distance between
the systems may be defined from the metric in X ambient space, with the care
to chose the ultradistribution expansion point in a central position. Collisions
between the systems would correspond to the overlap of the supports of the
ultradistributions, etc.

5 Appendix: Test function and distribution spaces

Test function spaces
#D = ∪K {DK : ϕ ∈ C∞, supp (ϕ) ⊂ K} ; ‖ϕ‖(p,K) = max0≤r≤p

{
sup

∣∣ϕ(r)
∣∣}

#K = ∩∞p=0Kp;Kp = completion of C∞ for the norm ‖ϕ‖ = max0≤q≤p
{

sup
∣∣ep|x|ϕ(q)

∣∣}
# S = ∩Sp,r =

{
ϕ ∈ C∞ : ‖ϕ‖p,r = sup

∣∣xpϕ(r)
∣∣}

# E = ϕ ∈ C∞ with ω−convergence on compacts
# Z = ϕ : F {ϕ} ∈ D, ϕ (z) entire :

∣∣zkϕ (z)
∣∣ ≤ Ckea|Im(z)|

# U = ∩∞p=0Up;Up = {ϕ : F {ϕ} ∈ Kp} ; ‖ϕ‖p = supz∈Λp
{(1 + |z|p) |ϕ (z)|}

# H = Entire functions with topology of uniform convergence on compacts
of C
# Zexp = ∩∞j=1Zexp,j ;Zexp,j =

{
ϕ : ‖ϕ‖exp,j = maxk≤j

{
ej|Re(z)| ∣∣ϕ(k) (z)

∣∣}}
Distribution spaces
# D′ = Schwartz distributions; locally µ (x) = Dk (f (x))
# K′ = Distributions of exponential type, µ (x) = Dk

(
ea|x|f

)
# S ′ = Tempered distributions
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Figure 2: Test function spaces

Figure 3: Distribution spaces
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# E ′ = Subspace of D′ of distributions of compact support
# Z ′ = Ultradistributions, D′ F→ Z ′;Z ′ F

−1
→ D′

# U ′ = Tempered ultradistributions
# U ′0 = Dual of H, ultradistributions of compact support
# Z ′exp = Topological dual of Zexp, contains U ′ and K′ as proper subspaces
F denotes Fourier morphisms. For details see Refs. [13] [14].
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